Amaç: Topografik gözyaşı filmi kırılma zamanı testi (TKZ) ile meibomian bez (MB) kaybı arasındaki ilişkiyi incelemek. Gereç ve Yöntemler: Prospektif çalışmamız 295 gönüllünün 295 gözü ile yapılmıştır. Her gönüllünün TKZ testindeki topografik gözyaşı filmi ilk kırılma zamanı (T-İKZ) ve topografik gözyaşı filmi ortalama kırılma zamanı (T-OKZ) parametreleri ile meibografide MB kayıp miktarını hem kantitatif hem de kalitatif değerler açısından inceledik. Bulgular: T-İKZ 7,1 sn ve üzeri olan olguların alt kapak MB kayıp düzeyi, T-İKZ değeri 5 sn ve altı olan olgulardan daha düşük bulundu (p=0,047). T-İKZ değeri arttıkça MB kayıp değerleri azalmaktadır. Ancak bu ilişki istatistiksel olarak anlamlı değildi (sırasıyla alt ve üst kapak MB kayıp oranları için korelasyon Ꞌr=-0,114, p=0,092, ve Ꞌr=-0,049, p=0,469). Sonuç: TKZ testindeki ilk kırılma zamanı ve ortalama kırılma zamanı parametreleri ile MB kayıp parametreleri arasında anlamlı ilişki saptamadık. Ancak MB kayıp miktarı %25'in altı ve üstü olarak ve TKZ parametrelerini ≤5 sn, 5,1-7 sn ve ≥7,1 sn olacak şekilde değer aralıklarına ayırdığımızda MB kayıp değerleri ile TKZ parametreleri arasında daha anlamlı sonuçların çıktığını gördük. T-İKZ değeri ≤5 sn olan gözlerde daha fazla MB kaybı varken, MB kayıp oranı ≥%25 olan olgularda ise T-İKZ değerinin ≤5 sn olma oranı daha fazlaydı. MB kaybı ile gözyaşı filmi kırılma zamanı arasındaki karmaşık ilişkinin araştırılmasında ek parametrelere ve testlere ihtiyaç olduğunu düşünmekteyiz.
Anahtar Kelimeler: Meibografi; topografik gözyaşı filmi kırılma zamanı testi; topografik ilk kırılma zamanı; topografik ortalama kırılma zamanı; Scheimpflug kamera
Objective: To evaluate the relationship between topographic tear film break-up time (T-BUT) and meibomian gland (MG) loss. Material and Methods: Our prospective study was conducted with 295 eyes of 295 participants. We examined the topographical first tear film break-up time (Tf-BUT), topographical average tear film break-up time (Ta-BUT) parameters and the amount of MG loss in meibography in each participant's T-BUT test, both quantitatively and qualitatively. Results: The lower lid MG losses in cases with Tf-BUT value ≥7.1 sec was found to be lower than those with Tf-BUT≤5 (p=0.047). We found a negative correlation between T-BUT and MG loss parameters. However, this correlation is not statistically significant (correlation Ꞌr=-0.114, p=0.092, and Ꞌr=-0.049, p=0.469 for lower and upper lid MG loss rates, respectively). Conclusion: We did not detect a significant correlation between the first break-up time and average break-up time parameters in the T-BUT test, which is one of the tests evaluating tear film stability, and the MG loss parameters. However, loss rates above and below a 25% cut-off value in MG and/or when we divided the T-BUT parameters into value ranges of ≤5 sec, 5.1-7 sec and ≥7.1 sec, we found that more significant results were obtained between MG loss values and T-BUT parameters. We detected more MG loss in patients with a Tf-BUT value of ≤5 seconds, and a higher rate of ≤5 seconds in patients with a MGloss rate of ≥25%. We conclude that additional parameters and tests are needed to investigate the complex relationship between MG loss and tear film break-up time tests.
Keywords: Meibography; topographic tear film break-up time test; topographic first break-up time; topographic mean break-up time; Scheimpflug camera
- Willcox MDP, Argüeso P, Georgiev GA, Holopainen JM, Laurie GW, Millar TJ, et al. TFOS DEWS II Tear Film Report. Ocul Surf. 2017;15(3):366-403. [Crossref] [PubMed] [PMC]
- King-Smith PE, Fink BA, Hill RM, Koelling KW, Tiffany JM. The thickness of the tear film. Curr Eye Res. 2004;29(4-5):357-68. [Crossref] [PubMed]
- Chen Q, Wang J, Tao A, Shen M, Jiao S, Lu F. Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses. Invest Ophthalmol Vis Sci. 2010;51(4):1988-93. [Crossref] [PubMed] [PMC]
- King-Smith PE, Fink BA, Fogt N, Nichols KK, Hill RM, Wilson GS. The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Vis Sci. 2000;41(11):3348-59. [PubMed]
- Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, et al. In-depth analysis of the human tear proteome. J Proteomics. 2012;75(13):3877-85. [Crossref] [PubMed]
- Azkargorta M, Soria J, Ojeda C, Guzmán F, Acera A, Iloro I, et al. Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res. 2015;14(6):2649-58. [Crossref] [PubMed]
- Aranha Dos Santos V, Schmetterer L, Gröschl M, Garhofer G, Schmidl D, Kucera M, et al. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography. Opt Express. 2015;23(16):21043-63. [Crossref] [PubMed]
- Werkmeister RM, Alex A, Kaya S, Unterhuber A, Hofer B, Riedl J, et al. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(8):5578-83. [Crossref] [PubMed]
- Huang JX, Tankam P, Aquavella JV, Hindman HB, Clarkson E, Kupinski M, et al. Tear film thickness estimation using optical coherence tomography and maximum-likelihood estimation. Invest Ophthalmol Vis Sci. 2015;56(7):351. [Link]
- Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol. 1977;22(2):69-87. [Crossref] [PubMed]
- Wolff E. The muco-cutaneous junction of the lid margin and the distribution of the tear fluid. Trans Ophthalmol Soc U K. 1946;66:291e308. [Link]
- Cher I. A new look at lubrication of the ocular surface: fluid mechanics behind the blinking eyelids. Ocul Surf. 2008;6(2):79-86. [Crossref] [PubMed]
- Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012;31(6):527-50. [Crossref] [PubMed]
- Dartt DA. Tear lipocalin: structure and function. Ocul Surf. 2011;9(3):126-38. [Crossref] [PubMed] [PMC]
- Pult H, Riede-Pult BH, Nichols JJ. Relation between upper and lower lids' meibomian gland morphology, tear film, and dry eye. Optom Vis Sci. 2012;89(3):E310-5. Erratum in: Optom Vis Sci. 2012;89(4):517. [Crossref] [PubMed]
- Knop N, Knop E. Meibom-Drüsen. Teil I: anatomie, embryologie und histologie der meibom-drüsen [Meibomian glands. Part I: anatomy, embryology and histology of the Meibomian glands]. Ophthalmologe. 2009;106(10):872-83. German. [Crossref] [PubMed]
- Lee JS, Jun I, Kim EK, Seo KY, Kim TI. Clinical accuracy of an advanced corneal topographer with tear-film analysis in functional and structural evaluation of dry eye disease. Semin Ophthalmol. 2020;35(2):134-40. [Crossref] [PubMed]
- Butovich IA. Meibomian glands, meibum, and meibogenesis. Exp Eye Res. 2017;163:2-16. [Crossref] [PubMed] [PMC]
- Wolffsohn JS, Arita R, Chalmers R, Djalilian A, Dogru M, Dumbleton K, et al. TFOS DEWS II Diagnostic Methodology report. Ocul Surf. 2017;15(3):539-74. [Crossref] [PubMed]
- Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276-83. [Crossref] [PubMed]
- Green-Church KB, Butovich I, Willcox M, Borchman D, Paulsen F, Barabino S, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest Ophthalmol Vis Sci. 2011;52(4):1979-93. [Crossref] [PubMed] [PMC]
- The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75-92. [Crossref] [PubMed]
- Wu H, Wang Y, Dong N, Yang F, Lin Z, Shang X, et al. Meibomian gland dysfunction determines the severity of the dry eye conditions in visual display terminal workers. PLoS One. 2014;9(8):e105575. [Crossref] [PubMed] [PMC]
- Meşen A, Kamil Yavuzer K. Gözyaşı film kırılma zamanının yeni nesil ve geleneksel yöntemlerle ölçülerek karşılaştırılması [Comparison of tear film breaking time measured using new generation and traditional methods]. Turkiye Klinikleri J Ophthalmol. 2021;30(1):24-9. [Crossref]
- Acet Y, Çil B, Kabak M, Vural E. Instability of tear film after novel coronavirus disease: a noninvasive and no contact method by a scheimpflug-placido disc topographer. Klin Monbl Augenheilkd. 2022;239(3):338-45. English. [Crossref] [PubMed]
- Pult H, Riede-Pult B. Comparison of subjective grading and objective assessment in meibography. Cont Lens Anterior Eye. 2013;36(1):22-7. [Crossref] [PubMed]
- Tanrıverdi C, Nurözler Tabakçı B. Evaluation of tear film layer and meibomian gland morphology in geriatric patients with chronic blepharitis. Turkish Journal of Geriatrics. 2019;22(3):324-30. [Crossref]
- Korb DR, Greiner JV, Glonek T, Whalen A, Hearn SL, Esway JE, et al. Human and rabbit lipid layer and interference pattern observations. Adv Exp Med Biol. 1998;438:305-8. [Crossref] [PubMed]
- Arita R, Morishige N, Koh S, Shirakawa R, Kawashima M, Sakimoto T, et al. Increased tear fluid production as a compensatory response to meibomian gland loss: a multicenter cross-sectional study. Ophthalmology. 2015;122(5):925-33. [Crossref] [PubMed]
- Arita R, Morishige N, Fujii T, Fukuoka S, Chung JL, Seo KY, et al. Tear interferometric patterns reflect clinical tear dynamics in dry eye patients. Invest Ophthalmol Vis Sci. 2016;57(8):3928-34. [Crossref] [PubMed]
- Kim HM, Eom Y, Song JS. The relationship between morphology and function of the meibomian glands. Eye Contact Lens. 2018;44(1):1-5. [Crossref] [PubMed]
- Maskin SL, Testa WR. Infrared video meibography of lower lid meibomian glands shows easily distorted glands: implications for longitudinal assessment of atrophy or growth using lower lid meibography. Cornea. 2018;37(10):1279-86. [Crossref] [PubMed]
- Adil MY, Xiao J, Olafsson J, Chen X, Lagali NS, Ræder S, et al. Meibomian gland morphology is a sensitive early indicator of meibomian gland dysfunction. Am J Ophthalmol. 2019;200:16-25. [Crossref] [PubMed]
.: İşlem Listesi