Amaç: Akıcı kompozit rezinler, günümüzde liner materyali olarak sıklıkla kullanılmaktadır. Düşük vizkozitesi, kullanım kolaylığı akıcı kompozit rezinleri daha cazip hâle getirmekte ve kullanımını artırmaktadır. Son dönemde popüler hâle gelen ön ısıtma işleminin, kompozitin mekanik özelliklerini iyileştirdiği ve kavite duvarlarına adaptasyonu artırdığı gösterilmiştir. Çalışmanın amacı, ısıtılmış 2 tepilebilir kompozit rezinin, akıcı kompozit rezine bağlanma dayanımlarını değerlendirmektir. Gereç ve Yöntemler: Çalışmada, standart ölçülerde 60 adet akrilik blok hazırlandı. Bu akrilik bloklara 5 mm genişliğinde 2 mm derinliğinde kaviteler açılıp, akıcı kompozit rezin (EsFlow, Spident) yerleştirildi. Bloklar rastgele 6 gruba ayrıldı (n=10). Ardından farklı sıcaklıklarda (21°C, 40°C, 60°C) bekletilen 2 ayrı kompozit rezin (G-ænial posterior GC, Clearfil Majesty Posterior Kuraray), akıcı kompozit rezin ile oluşturulmuş yüzeylere silikon kalıplar yardımıyla (2 mm derinliğinde, 4 mm çapında) yerleştirildi ve polimerize edildi. Örneklerin bağlanma dayanımı, Instron® Test cihazında ölçüldü ve veriler SPSS 20.0 uygulamasıyla iki yönlü varyans analizi ve Tukey çoklu karşılaştırma testi yapılarak değerlendirildi. Bulgular: Akıcı kompozit rezine bağlanan G-ænial Posterior ve Clearfil Majesty Posterior kompozit rezinlerin aynı sıcaklık grupları kıyaslandığında bağlanma dayanım değerleri arasında anlamlı fark bulunmamıştır (p>0,05). Clearfil Majesty Posterior kompozit rezin, farklı sıcaklık değerlerinde ön ısıtma işlemi yapılan grupların bağlanma dayanımı değerleri arasında istatistiksel olarak anlamlı fark görülmezken (p>0,05), G-ænial Posterior kompozitin, oda sıcaklığı (21°C) 40°C ve 60°C ön ısıtma işlemi uygulanan gruplar arasında artan sıcaklık değerleri ile istatistiksel olarak anlamlı artış bulunmuştur (p<0,05). Sonuç: Çalışmada, G-ænial Posterior kompozit rezine ön ısıtma işlemi uygulanması kompozitin liner materyaline bağlanma dayanımını artırdığı, Clearfil Majesty Posterior kompozitin ise bağlanma dayanımını değiştirmediği bulunmuştur.
Anahtar Kelimeler: Akışkan hibrit kompozit; kayma mukavemeti; ısıtma
Objective: Due to their low viscosity and ease of use, flowable composite resins are commonly used as liner materials today. It has been shown recently that the preheating process, which has become popular in recent times, improves the mechanical properties of the composite and enhances adaptation to cavity walls. The aim of this study is to evaluate the bond strengths of two preheated dual-cure composite resins to flowable composite resin. Material and Methods: In the study, 60 acrylic blocks of standard dimensions were prepared. Cavities measuring 5 mm in width and 2 mm in depth were created in these acrylic blocks, and flowable composite resin (EsFlow, Spident) was placed into them. The blocks were randomly divided into 6 groups (n=10). Subsequently, 2 different composite resins (Gænial Posterior GC, Clearfil Majesty Posterior Kuraray), stored at different temperatures (21°C, 40°C, 60°C), were placed onto surfaces created with flowable composite resin using silicone molds (4 mm diameter, 2 mm depth) and polymerized. The bond strength of the prepared samples was measured using an Instron test machine, and the obtained data were analyzed using two-way analysis of variance and Tukey's multiple comparison test with SPSS 20.0 software. Results: When comparing the bond strength values of G-ænial Posterior and Clearfil Majesty Posterior composite resins bonded to flowable composite resin within the same temperature groups, no significant difference was found (p>0.05). Although there was no statistically significant difference observed in the bond strength values of Clearfil Majesty Posterior composite resin among groups subjected to different preheating temperatures (p>0.05), G-ænial Posterior composite resin showed a statistically significant increase in bond strength values with increasing preheating temperatures between room temperature (21°C) and groups subjected to 40°C and 60°C preheating (p<0.05). Conclusion: The results of study have shown that the application of preheating increases the bond strength between G-ænial Posterior composite and the liner material, while it does not alter the bond strength between Clearfil Majesty Posterior composite and the liner.
Keywords: Flowable hybrid composite; shear strength; heating
- Christensen GJ. Should resin-based composite dominate restorative dentistry today? J Am Dent Assoc. 2010;141(12):1490-3. [Crossref] [PubMed]
- Nada K, El Mowafy O. Effect of precuring warming on mechanical properties of restorative composites. Int J Dent. 2011;2011:536212. [Crossref] [PubMed] [PMC]
- Condon JR, Ferracane JL. Assessing the effect of composite formulation on polymerization stress. J Am Dent Assoc. 2000;131(4):497-503. [Crossref] [PubMed]
- Aw TC, Nicholls JI. Polymerization shrinkage of densely-filled resin composites. Oper Dent. 2001;26(5):498-504. [PubMed]
- Baroudi K, Rodrigues JC. Flowable resin composites: a systematic review and clinical considerations. J Clin Diagn Res. 2015;9(6):ZE18-24. [PubMed] [PMC]
- Haak R, Wicht MJ, Noack MJ. Marginal and internal adaptation of extended class I restorations lined with flowable composites. J Dent. 2003;31(4):231-9. [Crossref] [PubMed]
- Leevailoj C, Cochran MA, Matis BA, Moore BK, Platt JA. Microleakage of posterior packable resin composites with and without flowable liners. Oper Dent. 2001;26(3):302-7. [PubMed]
- Elsayad I. Cuspal movement and gap formation in premolars restored with preheated resin composite. Oper Dent. 2009;34(6):725-31. [Crossref] [PubMed]
- Choudhary N, Kamat S, Mangala TM, Thomas M. Effect of pre-heating composite resin on gap formation at three different temperatures. Journal of Conservative Dentistry. 2011;14(2):191-5. [Crossref] [PubMed] [PMC]
- Bağis YH, Rueggeberg FA. Effect of post-cure temperature and heat duration on monomer conversion of photo-activated dental resin composite. Dent Mater. 1997;13(4):228-32. [Crossref] [PubMed]
- Daronch M, Rueggeberg FA, De Goes MF. Monomer conversion of pre-heated composite. J Dent Res. 2005;84(7):663-7. [Crossref] [PubMed]
- Abiodun Solanke I, Ajayi D, Arigbede A. Nanotechnology and its application in dentistry. Ann Med Health Sci Res. 2014;4(3):S171-7. [Crossref] [PubMed] [PMC]
- Bore Gowda V, Sreenivasa Murthy BV, Hegde S, Venkataramanaswamy SD, Pai VS, Krishna R. Evaluation of gingival microleakage in class ii composite restorations with different lining techniques: an in vitro study. Scientifica (Cairo). 2015;2015:896507. [Crossref] [PubMed] [PMC]
- Kaisarly D, Meierhofer D, El Gezawi M, Rösch P, Kunzelmann KH. Effects of flowable liners on the shrinkage vectors of bulk-fill composites. Clin Oral Investig. 2021;25(8):4927-40. [Crossref] [PubMed] [PMC]
- Lovell LG, Berchtold KA, Elliott J, Lu H, Bowman CN. Understanding the kinetics and network formation of dimethacrylate dental resins. Polymers for Advanced Technologies. 2001;12(6):335-45. [Crossref]
- Muñoz CA, Bond PR, Sy-Muñoz J, Tan D, Peterson J. Effect of pre-heating on depth of cure and surface hardness of light-polymerized resin composites. Am J Dent. 2008;21(4):215-22. [PubMed]
- Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN. The effect of cure rate on the mechanical properties of dental resins. Dent Mater. 2001;17(6):504-11. [Crossref] [PubMed]
- Patussi AFC, Ramacciato JC, da Silva JGR, Nascimento VRP, Campos DES, de Araújo Ferreira Munizz I, et al. Preheating of dental composite resins: A scoping review. J Esthet Restor Dent. 2023;35(4):646-56. [Crossref] [PubMed]
- Demirbuga S, Ucar FI, Cayabatmaz M, Zorba YO, Cantekin K, Topçuoğlu HS, et al. Microshear bond strength of preheated silorane and methacrylate-based composite resins to dentin. Scanning. 2016;38(1):63-9. [Crossref] [PubMed]
- Mundim FM, Garcia Lda F, Cruvinel DR, Lima FA, Bachmann L, Pires-de-Souza Fde C. Color stability, opacity and degree of conversion of pre-heated composites. J Dent. 2011;39(1):e25-9. [Crossref] [PubMed]
- Da Costa JB, Hilton TJ, Swift EJR. Preheating composites. Journal of Esthetic and Restorative Dentistry. 2011;23(4):269-75. [Crossref] [PubMed]
- Yang JN, Raj JD, Sherlin H. Effects of preheated composite on micro leakage-an in-vitro study. J Clin Diagn Res. 2016;10(6):ZC36-8. [PubMed] [PMC]
- Lousan do Nascimento Poubel D, Ghanem Zanon AE, Franco Almeida JC, Vicente Melo de Lucas Rezende L, Pimentel Garcia FC. Composite resin preheating techniques for cementation of indirect restorations. Int J Biomater. 2022;2022:5935668. [Crossref] [PubMed] [PMC]
- Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater. 2007;23(10):1283-8. [Crossref] [PubMed]
- Tauböck TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. J Dent. 2015;43(11):1358-64. [Crossref] [PubMed]
- Jahandideh Y, Falahchai M, Pourkhalili H. Effect of surface treatment with er:yag and co2 lasers on shear bond strength of polyether ether ketone to composite resin veneers. J Lasers Med Sci. 2020;11(2):153-9. [Crossref] [PubMed] [PMC]
- Ates SM, Caglar I, Yesil Duymus Z. The effect of different surface pretreatments on the bond strength of veneering resin to polyetheretherketone. J Adhes Sci Technol. 2018;32(20):2220-31. [Crossref]
- Sano H, Chowdhury AFMA, Saikaew P, Matsumoto M, Hoshika S, Yamauti M. The microtensile bond strength test: Its historical background and application to bond testing. Jpn Dent Sci Rev. 2020;56(1):24-31. [Crossref] [PubMed] [PMC]
- Al-Sharaa KA, Watts DC. Stickiness prior to setting of some light cured resin-composites. Dent Mater. 2003;19(3):182-7. [Crossref] [PubMed]
- Uctasli MB, Arisu HD, Lasilla LV, Valittu PK. Effect of preheating on the mechanical properties of resin composites. Eur J Dent. 2008;2(4):263-8. [Crossref] [PubMed] [PMC]
- Davari A, Daneshkazemi A, Behniafar B, Sheshmani M. Effect of pre-heating on microtensile bond strength of composite resin to dentin. J Dent (Tehran). 2014;11(5):569-75. [PubMed] [PMC]
.: İşlem Listesi