Nanoteknoloji kavramının hayatımıza girmesiyle nanomalzemeler pek çok farklı sektörde, farklı uygulamalarda kendine yer bulmaya başlamıştır. Boyutlarının nano ölçekte olması bu yapılara aynı malzemenin makro formundan daha farklı ve üstünlüklü özellikler kazandırır. Farmasötik/tıbbi uygulama alanları da nanoyapıların bu özelliğinden faydalanarak konvansiyonel yöntemlerin kısıtlarını aşmayı amaçlamıştır. Bu kapsamda nanoyapılar etkin tedavi, teşhis, görüntüleme gibi amaçlarla kullanılmaya başlanmıştır. Özellikle ilaç taşıyıcı nanosistemlerin umut verici yapılar olduğu belirlenmiştir. Ancak bu yapıları özel kılan değişken ve modifiye edilebilir fizikokimyasal özellikleri aynı zamanda bu yapıların toksik etkisini öngörülemeyen yönde ve oldukça değişken bir ölçekte etkilemektedir. Bu derleme çalışması kapsamında güncel literatür verilerinin değerlendirilmesi ile farmasötik uygulamalarda yaygın kullanılan nanoyapıların belirlenmesi, bu yapılar için rapor edilmiş toksisite verilerinin derlenmesi, belli sınıftaki nanoyapılar için yaygın toksik etkinin belirlenmesi amaçlanmıştır. Ancak kullanılan nanoyapıların çeşitliliği, nanopartikül elde edilme ve karakterizasyon yöntemlerinin standart olmaması, nanopartiküllere özel olarak tanımlanmış ve uluslararası kabul görmüş standart test yöntemlerinin bulunmaması gibi nedenlerle farklı çalışma verilerini ortak bir parametre özelinde değerlendirmek ve ilgili nanoyapılar için belli bir fizikokimyasal özelliğe ya da diğer bir değişkene bağlı olası toksik etkiyi genellemek mümkün olmamıştır. Bununla birlikte; incelenen literatür verileri farmasötik uygulamalarda organik, inorganik ve karbon-temelli çok sayıda farklı nanopartikülün çalışmalara konu olduğunu; toksisite değerlendirmesi yapılan nanopartiküller için toksik etki tespit edilen durumların toksisite belirlenmeyen durumlardan daha fazla olduğunu; nanoyapıların toksisitesini değerlendirmenin ise zor ve kritik olduğunu göstermiştir. Dolayısı ile nanofarmasötiklerin güvenli kullanımı için; uluslararası ve ulusal otoriteler tarafından nanoyapılar özelinde standart elde etme, karakterizasyon ve toksisite test yöntemleri belirlenmelidir. Bu standartlara bağlı kalınarak daha detaylı ve çeşitli çalışmalar yürütülmelidir.
Anahtar Kelimeler: Toksisite; nanoyapılar; nanoteknoloji; nanopartikül; farmasötik müstahzarlar
Nowadays nanomaterials have started to find a place for themselves in many different sectors/applications. The nanoscale sizes give these structures different and superior properties than the macro form of the same material. Pharmaceutical/medical application areas also aimed to overcome the limitations of conventional methods by taking advantage of nanostructures. Within this contex, nanostructures have been used for effective treatment, diagnosis and imaging purposes. Especially nano drug delivery systems have been identified as promising structures. However, the variable and modifiable physicochemical properties also affect the toxic effects of them in an unpredictable way, on a highly variable scale. Within the scope of this review study, it was aimed to determine the nanostructures commonly used in pharmaceutical applications, to compile the toxicity data reported for these structures, to determine the common toxic effect for certain classes of nanostructures. However, due to the diversity of nanostructures used, the non-standardization of nanoparticle production-characterization methods, and the lack of internationally accepted standard test methods it was not possible to generalize the possible toxic effects. With this; The reviewed literature data shows that many different organic, inorganic and carbonbased nanoparticles are the subject of studies in pharmaceutical applications; For the nanoparticles for which toxicity evaluation was made, the cases in which toxic effects were detected are more than the cases in which no toxicity was determined; showed that it is difficult and critical to evaluate the toxicity of nanostructures. Therefore; Standardization, characterization and toxicity test methods should be determined by international/national authorities for nanostructures and more detailed, various studies should be carried out by adhering to these standards.
Keywords: Toxicity; nanostructures; nanotechnology; nanoparticles; pharmaceutical preparations
- Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B, Sağlam N. Nanotoxicity: a challenge for future medicine. Turk J Med Sci. 2020;50(4):1180-96. [Crossref] [PubMed] [PMC]
- Bisso S, Leroux JC. Nanopharmaceuticals: a focus on their clinical translatability. Int J Pharm. 2020;578:119098. [Crossref] [PubMed]
- Çalış S, Öztürk Atar K, Arslan FB, Eroğlu H, Çapan Y. Nanopharmaceuticals as drug-delivery systems. In: Mohapatra S, Ranjan S, Dasgupta N, Mishra R, Thomas S, eds. Nanocarriers for Drug Delivery. 1st ed. Amsterdam, Netherlands: Elsevier; 2019. p.133-54. [Crossref]
- Erkekoglu P, Kocer-Gumusel B. Toxicity assessment of nanopharmaceuticals. In: Grumezescu AM, ed. Inorganic Frameworks as Smart Nanomedicines. 1st ed. Cambridge, MA: William Andrew; 2018. p.565-603. [Crossref]
- Lu W, Yao J, Zhu X, Qi Y. Nanomedicines: redefining traditional medicine. Biomed Pharmacother. 2021;134:111103. [Crossref] [PubMed]
- Mühlebach S. Regulatory challenges of nanomedicines and their follow-on versions: a generic or similar approach? Adv Drug Deliv Rev. 2018;131:122-31. [Crossref] [PubMed]
- Ho JQ, Arabi L, Basu M, Khaled F, Gonzalez Y, Ghegeliu D, et al. Nanotechnology and nanomedicine. In: Mahmoudi M, ed Nanomedicine for Ischemic Cardiomyopathy. 1st ed. London: Academic Press; 2020. p.9-21. [Crossref] [PMC]
- Damodharan J. Nanomaterials in medicine-An overview. Materials Today: Proceedings. 2021;37:383-5. [Crossref]
- Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Åslund AKO, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326:164-71. [Crossref] [PubMed] [PMC]
- Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, et al. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci. 2020;15(2):220-36. [Crossref] [PubMed] [PMC]
- Zhang C, Yan L, Wang X, Zhu S, Chen C, Gu Z, et al. Progress, challenges, and future of nanomedicine. Nano Today. 2020;35. [Crossref]
- Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal. 2020;10(3):221-32. [Crossref] [PubMed] [PMC]
- Zırh-Gürsoy A. Nanofarmasötikler ve Uygulamaları. 1. Baskı. İstanbul: Kontrollü Salım Sistemleri Derneği; 2014.
- Aguilar ZP. Conclusions. Nanomaterials for Medical Applications. 1st ed. Oxford: Elsevier; 2013. p.409-51. [Crossref]
- Madhyastha H, Madhyastha R, Nakajima Y, Daima HK, Navya PN, Maruyama M. An opinion on nanomedicine and toxico-cellular crosstalk: considerations and caveats. Materials Today: Proceedings. 2019;10:100-5. [Crossref]
- Ojer P, Iglesias T, Azqueta A, Irache JM, López de Cerain A. Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. Eur J Pharm Biopharm. 2015;97(Pt A):206-17. [Crossref] [PubMed]
- Khare V, Saxena AK, Gupta PN. Toxicology considerations in nanomedicine. In: Thomas S, Grohens Y, Ninan N, eds. Nanotechnology Applications for Tissue Engineering. 1st ed. Amsterdam: Elsevier; 2015. p.239-61. [Crossref] [PubMed] [PMC]
- Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282-95. [Crossref] [PubMed] [PMC]
- Zhao Y, Sultan D, Liu Y. Biodistribution, excretion, and toxicity of nanoparticles. In: Cui W, Zhao X, eds. Theranostic Bionanomaterials. 1st ed. Amsterdam: Elsevier; 2019. p.27-53. [Crossref]
- Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications. 2020;25. [Crossref]
- Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050-5. [Crossref] [PubMed] [PMC]
- Chatterjee S, Mankamna Kumari R, Nimesh S. Nanotoxicology. In: Nimesh S, Chan R, Gupta N, eds. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. 1st ed. Duxford: Woodhead Publishing; 2017. p.187-201. [Crossref] [PMC]
- Gao H, Jiang X. Perspective on strategies to reduce the neurotoxicity of nanomaterials and nanomedicines. Neurotoxicity of Nanomaterials and Nanomedicine. 1st ed. London: Academic Press; 2017. p.331-6. [Crossref]
- Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40. [Crossref] [PubMed]
- Özcan O, Erdal H, Çakırca G, Yönden Z. Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri [Oxidative stress and its impacts on intracellular lipids, proteins and DNA]. Journal of Clinical and Experimental Investigations. 2015;6(3):331-6. [Crossref]
- Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22(1):64-75. [Crossref] [PubMed] [PMC]
- Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials. 2005;26(13):1565-73. [Crossref] [PubMed]
- Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011;6(5):446-65. [Crossref]
- Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. [Crossref] [PubMed] [PMC]
- Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev. 2019;148:146-80. [Crossref] [PubMed]
- Zhao X, Liu R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int. 2012;40:244-55. [Crossref] [PubMed]
- Du R, Niu W, Hong H, Huo S. Nanotoxicity and regulatory aspects in musculoskeletal regeneration. In: Razavi M, ed. Nanoengineering in Musculoskeletal Regeneration. 1st ed. London: Academic Press; 2020. p.197-235. [Crossref]
- Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today. 2018;23(5):974-91. [Crossref] [PubMed]
- Marques MRC, Choo Q, Ashtikar M, Rocha TC, Bremer-Hoffmann S, Wacker MG. Nanomedicines-Tiny particles and big challenges. Adv Drug Deliv Rev. 2019;151-152:23-43. [Crossref] [PubMed]
- Kumar V, Sharma N, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters. 2017;7(4):243-56. [Crossref]
- Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, et al. High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1):e1413. [Crossref] [PubMed] [PMC]
- Rostami E. Progresses in targeted drug delivery systems using chitosan nanoparticles in cancer therapy: a mini-review. Journal of Drug Delivery Science and Technology. 2020;58. [Crossref]
- Tavakol S, Kiani V, Tavakol B, Derakhshan MA, Joghataei MT, Rezayat SM. Toxicity concerns of nanocarriers. In: Mishra V, Kesharwani P, bin Mohd Amin MCI, Iyer A, eds. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. 1st ed. London, United Kingdom: Academic Press, an imprint of Elsevier; 2017. p.453-84. [Crossref]
- Yuan Z, Li Y, Hu Y, You J, Higashisaka K, Nagano K, et al. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos. Int J Pharm. 2016;515(1-2):644-56. [Crossref] [PubMed]
- Hu YL, Qi W, Han F, Shao JZ, Gao JQ. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine. 2011;6:3351-9. [Crossref] [PubMed] [PMC]
- Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int J Mol Sci. 2019;20(22):5776. [Crossref] [PubMed] [PMC]
- Jesus S, Marques AP, Duarte A, Soares E, Costa JP, Colaço M, et al. Chitosan nanoparticles: shedding light on immunotoxicity and hemocompatibility. Front Bioeng Biotechnol. 2020;8:100. [Crossref] [PubMed] [PMC]
- Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, et al. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. Journal of Drug Delivery Science and Technology. 2021;62. [Crossref]
- Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol. 2016;305:83-92. [Crossref] [PubMed]
- Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let's meet the challenge. Int J Pharm. 2010;394(1-2):122-42. [Crossref] [PubMed]
- Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules. 2019;9(8):330. [Crossref] [PubMed] [PMC]
- Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319-29. [Crossref] [PubMed]
- Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324-36. [Crossref] [PubMed] [PMC]
- Yousefpour Marzbali M, Yari Khosroushahi A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol. 2017;79(4):637-49. [Crossref] [PubMed]
- Doktorovová S, Kovačević AB, Garcia ML, Souto EB. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235-52. [Crossref] [PubMed]
- Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, et al. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology. 2019;13(2):221-39. [Crossref] [PubMed]
- Bagheri‐abassi F, Alavi H, Mohammadipour A, Motejaded F, Ebrahimzadeh‐bideskan A. The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus. Iranian Journal of Basic Medical Sciences. 2015;18(7):644-8. [Link]
- Weldon BA, Park JJ, Hong S, Workman T, Dills R, Lee JH, et al. Using primary organotypic mouse midbrain cultures to examine developmental neurotoxicity of silver nanoparticles across two genetic strains. Toxicol Appl Pharmacol. 2018;354:215-24. [Crossref] [PubMed]
- Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG. Nanomaterials meet zebrafish: toxicity evaluation and drug delivery applications. J Control Release. 2019;311-312:301-18. [Crossref] [PubMed]
- Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. J Hazard Mater. 2021;409:124915. [Crossref] [PubMed]
- Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, et al. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett. 2013;217(3):205-16. [Crossref] [PubMed]
- Paino IM, Marangoni VS, de Oliveira Rde C, Antunes LM, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol Lett. 2012;215(2):119-25. [Crossref] [PubMed]
- Fraga S, Brandão A, Soares ME, Morais T, Duarte JA, Pereira L, et al. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine. 2014;10(8):1757-66. [Crossref] [PubMed]
- Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, et al. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe3O4 magnetic nanoparticles on erythrocytes. Sci Rep. 2015;5:16209. [Crossref] [PubMed] [PMC]
- Malhotra N, Chen JR, Sarasamma S, Audira G, Siregar P, Liang ST, et al. Ecotoxicity assessment of Fe3O4 magnetic nanoparticle exposure in adult zebrafish at an environmental pertinent concentration by behavioral and biochemical testing. Nanomaterials (Basel). 2019;9(6):873. [Crossref] [PubMed] [PMC]
- Shen S, Wang S, Zheng R, Zhu X, Jiang X, Fu D, et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials. 2015;39:67-74. [Crossref] [PubMed]
- Lin CX, Gu JL, Cao JM. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int J Nanomedicine. 2019;14:5595-609. [Crossref] [PubMed] [PMC]
- Czubacka E, Czerczak S. Are platinum nanoparticles safe to human health? Med Pr. 2019;70(4):487-95. [Crossref] [PubMed]
- Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063-77. [Crossref] [PubMed] [PMC]
- Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, et al. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials (Basel). 2020;10(2):387. [Crossref] [PubMed] [PMC]
- Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine. 2015;11(6):1407-16. [Crossref] [PubMed]
- Yazdimamaghani M, Moos PJ, Dobrovolskaia MA, Ghandehari H. Genotoxicity of amorphous silica nanoparticles: status and prospects. Nanomedicine. 2019;16:106-25. [Crossref] [PubMed] [PMC]
- Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114(2):165-72. [Crossref] [PubMed] [PMC]
- Gidwani B, Sahu V, Shukla SS, Pandey R, Joshi V, Jain VK, et al. Quantum dots: prospectives, toxicity, advances and applications. Journal of Drug Delivery Science and Technology. 2021;61. [Crossref]
- Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT. Carbon nanotubes in drug delivery: focus on anticancer therapies. Journal of Drug Delivery Science and Technology. 2020;59. [Crossref]
- Sharma S, Naskar S, Kuotsu K. A review on carbon nanotubes: influencing toxicity and emerging carrier for platinum based cytotoxic drug application. Journal of Drug Delivery Science and Technology. 2019;51:708-20. [Crossref]
- Malhotra N, Audira G, Castillo AL, Siregar P, Ruallo JMS, Roldan MJ, et al. An update report on the biosafety and potential toxicity of fullerene-based nanomaterials toward aquatic animals. Oxid Med Cell Longev. 2021;2021:7995223. [Crossref] [PubMed] [PMC]
- Acar EH. Nanoteknolojinin farmasötik uygulamalarda kullaniminin ve nanopartiküllerin toksik etkilerinin değerlendirilmesi [Yüksek lisans tezi]. Ankara: Hacettepe Üniversitesi; 2021. p.76. [Erişim tarihi: 6 Aralık 2022] [Erişim linki: [Link]
.: İşlem Listesi