Objective: Glass ionomers, commonly used as base materials, are also employed as restorative materials after modifications are made to their content. By altering their physical properties through additives, attempts have been made to impart antibacterial characteristics. This study aimed to assess the cytotoxic effects resulting from the addition of calcium carbonate (marble powder) to conventional glass ionomer luting cement on gingival fibroblast cells. Material and Methods: Conventional glass ionomer cement (Ionofil U, VOCO, Germany) was used in this study. The specimens were divided into three groups: Group A-Glass ionomer without marble particles (control). Group B-Glass ionomer with 5% wt. Calcium Carbonate (marble particles) added to the powder component. Group C-Glass ionomer with 10% wt. Calcium carbonate (marble particles) added to the powder component. Prepared samples were kept in medium for 24 hours. The cytotoxicity levels of the biomaterials used in the study were determined using the MTT (3-4.5-dimethyl-thiazolyl-2.5-diphenyltetrazolium bromide) method on gingival fibroblast cell. Statistical evaluation was performed using one-way analysis of variance and post hoc Duncan test (p<0.05). Results: Biomaterials other than those in Group A, when applied to fibroblast cells, did not exhibit cytotoxicity; instead, they stimulated fibroblast cell proliferation. Group A reduced fibroblast cell viability rates at concentrations of 100%, 50%, and 25%. Conclusion: Marble powder enhanced glass ionomers showed potential for clinical applications as samples did not show cytotoxic effects. Further physical tests are needed to assess the clinical suitability of the materials.
Keywords: Glass ionomer cement; cytotoxicity; fibroblast cells; marble powder; calcium carbonate
Amaç: Cam iyonomer simanlar, başlangıçta kaide materyali olarak kullanılmakla birlikte içeriklerinde yapılan modifikasyonlarla restoratif dolgu materyali olarak da yaygın bir şekilde kullanılmaktadır. Bu modifikasyonlar sayesinde, simanın fiziksel özelliklerini değiştirme amacının yanı sıra antibakteriyel özellikler de kazandırılmaya çalışılmıştır. Bu çalışmada, geleneksel cam iyonomer simanın içerisine kalsiyum karbonat (mermer tozu) eklenmesinin, gingival fibroblast hücreleri üzerindeki sitotoksisite etkisinin değerlendirilmesi amaçlamaktadır. Gereç ve Yöntemler: Bu çalışma kapsamında, VOCO (Almanya) tarafından üretilen geleneksel cam iyonomer siman (Ionofil U) kullanılmıştır. Örnekler 3 gruba ayrılmıştır: Grup A-Herhangi bir partikül içermeyen cam iyonomer siman (kontrol grubu). Grup B-Toz bileşenine ağırlıkça %5 kalsiyum karbonat (mermer partikülü) eklenmiş cam iyonomer siman. Grup C-Toz bileşenine ağırlıkça %10 kalsiyum karbonat (mermer partikülü) eklenmiş cam iyonomer siman. Hazırlanan örnekler 24 saat besi yerinde bekletilmiştir. Kullanılan biyomateryallerin sitotoksisite düzeyleri MTT (3-4,5-dimetil-tiyazolil-2,5-difeniltetrazolyum bromür) yöntemi ile belirlenmiştir. İstatistiksel değerlendirmesi tek yönlü varyans analizi ve Duncan Post testleri ile yapılmıştır (p<0,05). Bulgular: Kontrol grubu (Grup A) dışındaki gruplarda fibroblast hücrelere uygulanan biyomateryallerin sitotoksik etkisi gözlenmemiştir; aksine, hücre üremesi teşvik edilmiştir. Kontrol grubunda ise fibroblast hücrelerinde canlılık oranlarında %100, %50 ve %25 konsantrasyonlarda azalma görülmüştür. Sonuç: Mermer tozu ile güçlendirilmiş cam iyonomer simanlar, testlerde sitotoksik etki göstermediğinden dolayı gelecekte klinik uygulamalar için potansiyele sahip olabilir. Malzemelerin klinik uygunluğunu değerlendirmek için ise daha ileri fiziksel testlere ihtiyaç duyulmaktadır.
Anahtar Kelimeler: Cam iyonomer siman; sitotoksisite; fibroblast hücresi; mermer tozu; kalsiyum karbonat
- Sidhu SK, Nicholson JW. A Review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7(3):16. [Crossref] [PubMed] [PMC]
- Gupta AA, Mulay S, Mahajan P, Raj AT. Assessing the effect of ceramic additives on the physical, rheological and mechanical properties of conventional glass ionomer luting cement-An in-vitro study. Heliyon. 2019;5(7):e02094. [Crossref] [PubMed] [PMC]
- Noori AJ, Kareem FA. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon. 2019;5(10):e02568. [Crossref] [PubMed] [PMC]
- Crisp S, Ferner AJ, Lewis BG, Wilson AD. Properties of improved glass-ionomer cement formulations. J Dent. 1975;3(3):125-30. [Crossref] [PubMed]
- Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Martí JM, et al. Modifications in glass ionomer cements: nano-sized fillers and bioactive nanoceramics. Int J Mol Sci. 2016;17(7):1134. [Crossref] [PubMed] [PMC]
- Gürü M, Akyüz Y, Akın E. Mermer tozu/polyester kompozitlerde dolgu oraninin mekanik özelliklere etkileri [Effects of filler ratio on mechanical properties at marble powder/polyester composites]. Politeknik Dergisi. 2005;8(3):271-4. [Link]
- Allam G, Abd El-Geleel O. Evaluating the mechanical properties, and calcium and fluoride release of glass-ionomer cement modified with chicken eggshell powder. Dent J (Basel). 2018 18;6(3):40. [Crossref] [PubMed] [PMC]
- Gjorgievska E, Nicholson JW, Gabrić D, Guclu ZA, Miletić I, Coleman NJ. Assessment of the impact of the addition of nanoparticles on the properties of glass-ionomer cements. Materials (Basel). 2020;13(2):276. [Crossref] [PubMed] [PMC]
- Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36(6):450-5. [Crossref] [PubMed]
- Khaled SM, Miron RJ, Hamilton DW, Charpentier PA, Rizkalla AS. Reinforcement of resin based cement with titania nanotubes. Dent Mater. 2010;26(2):169-78. [Crossref] [PubMed]
- Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent. 2011;39(9):589-98. [Crossref] [PubMed]
- Yücetürk G. Yapay mermerde kullanılan kuvars ve kalsit minerallerinin fiziko-mekanik özellikleri [Artifical marble used in the physicomchanical properties of quartz and calsite]. Uluslararası Teknolojik Bilimler Dergisi. 2010;2(3):72-80. [Link]
- Çetin T. Türkiye mermer potansiyeli, üretimi ve ihracatı [Marble potential, production and export of Turkey]. Gazi Eğitim Fakültesi Dergisi. 2003;23(3):243-56. [Link]
- Małkiewicz K, Wychowański P, Olkowska-Truchanowicz J, Tykarska M, Czerwiński M, Wilczko M, et al. Uncompleted polymerization and cytotoxicity of dental restorative materials as potential health risk factors. Ann Agric Environ Med. 2017;24(4):618-23. [Crossref] [PubMed]
- Günay E, Celik S, Sarinc-Ulasli S, Özyürek A, Hazman Ö, Günay S, et al. Comparison of the anti-inflammatory effects of proanthocyanidin, quercetin, and damnacanthal on Benzo(a)pyrene exposed A549 alveolar cell line. Inflammation. 2016;39(2):744-51. [Crossref] [PubMed]
- Ulasli SS, Celik S, Gunay E, Ozdemir M, Hazman O, Ozyurek A, Koyuncu T, et al. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac J Cancer Prev. 2013;14(10):6159-64. [Crossref] [PubMed]
- Leal SC, Takeshita EM. Pediatric Restorative Dentistry. 1st ed. Springer, Cham: Springer; 2019. [Crossref] [PMC]
- Khristova Y, Aniskevich K. Prediction of creep of the epoxy resin filled with marble inclusions. Mechanic Composite Material. 1994;30:590-9. [Crossref]
- Hristova J, Valeva V, Ivanova J. Aging and filler effects on the creep model parameters of thermoset composites. Composites Science and Technology. 2002;62:1097-103. [Crossref]
- Ali MM, Agarwal SK, Solankey AK, Handoo SK. High-performance, marble-like plaster coatings. Cement and Concrete Research. 2000;30(6):977-80. [Crossref]
- Selimović-Draga? M, Huseinbegović A, Koba?lija S, Hatibović-Kofman S. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements. Bosn J Basic Med Sci. 2012;12(4):273-8. [Crossref] [PubMed] [PMC]
- de Souza Costa CA, Hebling J, Garcia-Godoy F, Hanks CT. In vitro cytotoxicity of five glass-ionomer cements. Biomaterials. 2003;24(21):3853-8. [Crossref] [PubMed]
- Zhu K, Zheng L, Xing J, Chen S, Chen R, Ren L. Mechanical, antibacterial, biocompatible and microleakage evaluation of glass ionomer cement modified by nanohydroxyapatite/polyhexamethylene biguanide. Dent Mater J. 2022;41(2):197-208. [Crossref] [PubMed]
- Yu M, Yan-Zhu G, Yan L, Yu-Rui W, Jiang-Chuan Y, Xin-Zi K, et al. Mechanical and antibacterial properties of h-BN-TiO2 nanocomposite-modified glass ionomer cement. Frontiers in Materials. 2022;9:1-13. [Crossref]
- Kashyap PK, Chauhan S, Negi YS, Goel NK, Rattan S. Biocompatible carboxymethyl chitosan-modified glass ionomer cement with enhanced mechanical and anti-bacterial properties. Int J Biol Macromol. 2022 31;223(Pt A):1506-20. [Crossref] [PubMed]
- Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006;160(2):171-7. [Crossref] [PubMed]
- Giacomelli E, Gonçalves Mota E, Mitsuo Silva Oshima H, Belle R, Mayumi Hirakata L. Development of glass ionomer cement modified with seashell powder as a scaffold material for bone formation. Rev Odonto Cienc. 2011;26(1):40-4. [Link]
.: İşlem Listesi