Objective: The aim of this study was to evaluate, for the first time, the effect of bioabsorbable calcified triglyceride bone cement (CTBC) on bone formation when used as an adjunct to guided bone regeneration (GBR) and compare it with the results obtained with deproteinized bovine bone (DBB). Material and Methods: Forty-eight rats were randomly divided into three equal-sized groups. Following incisions along with the inferior border of the mandible, full thickness flaps were elevated via an extraoral approach. Custom-made rigid, hemispherical teflon capsules were packed with CTBC, or DBB, or were left empty and placed facing the lateral surface of the mandibular ramus. At the postoperative 4th months, all rats were sacrificed and tissue samples were processed for decalcified histological evaluation of the newly formed bone, residual graft particles, and soft connective tissue within the space created by the capsules. Results: It was observed that the amount of mineralized bone formation in the capsules filled with CTBC and DBB was similar, and most of the capsules were filled with biomaterial particles embedded in the connective tissue. There was no significant difference between the 2 groups in terms of newly formed bone, graft particles or connective tissue (p>0.05). On the other hand, it was determined that a greater amount of new mineralized bone was formed in the control group compared to the CTBC or DBB groups (p<0.05). Conclusion: Grafting with CTBC or DBB did not make any difference when used as an adjunct to GBR.
Keywords: Guided bone regeneration; deproteinized bovine bone; calcified triglyceride bone cement
Amaç: Mevcut çalışmanın amacı, yönlendirilmiş kemik rejenerasyonunda biyoabsorbe kalsifiye trigliserid kemik simanının (KTKS) etkisini ilk defa değerlendirmek ve sonuçlarını deproteinize sığır kemiği (DSK) ile karşılaştırmaktır. Gereç ve Yöntemler: Kırk sekiz sıçan rastgele 3 eşit büyüklükte gruba ayrıldı. Mandibula alt kenarı boyunca yapılan kesilerin ardından, ekstraoral yaklaşımla tam kalınlıkta flep kaldırıldı. Özel yapım sert, yarı küresel teflon kapsüller KTKS, DSK ile dolduruldu veya boş bırakıldı (kontrol) ve mandibular ramusun lateral yüzeyine bakacak şekilde yerleştirildi. Ameliyat sonrası 4. ayda tüm sıçanlar sakrifiye edilerek, greft alanlarından alınan doku örnekleri kapsüller tarafından oluşturulan boşluk içinde yeni oluşan kemik, rezidüel greft partikülleri ve yumuşak bağ dokusu açısından histolojik olarak değerlendirildi. Bulgular: KTKS ve DSK ile doldurulmuş kapsüllerde mineralize kemik oluşumunun benzer şekilde ve kapsüllerin büyük kısmının bağ dokusu içine gömülü biyomateryal partikülleri ile dolu olduğu gözlendi. Yeni oluşan kemik, greft partikülleri veya bağ dokusu açısından 2 grup arasında anlamlı bir farklılık bulunmadı (p>0,05). Buna karşılık, kontrol grubunda KTKS veya DSK grupları ile karşılaştırıldığında daha büyük miktarda yeni mineralize kemik oluştuğu belirlendi (p<0,05). Sonuç: KTKS veya DSK ile greftleme, yönlendirilmiş kemik rejenerasyonuna ek olarak kullanıldığında herhangi bir farklılık yaratmadı.
Anahtar Kelimeler: Yönlendirilmiş kemik rejenerasyonu; deproteinize sığır kemiği; kalsifiye trigliserid kemik simanı
- Block MS, Haggerty CJ. Interpositional osteotomy for posterior mandible ridge augmentation. J Oral Maxillofac Surg. 2009;67(11 Suppl):31-9. [Crossref] [PubMed]
- Herford AS, Nguyen K. Complex bone augmentation in alveolar ridge defects. Oral Maxillofac Surg Clin North Am. 2015;27(2):227-44. [Crossref] [PubMed]
- Strietzel FP, Reichart PA, Graf HL. Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim): preliminary clinical and histological results. Clin Oral Implants Res. 2007;18(6):743-51. [Crossref] [PubMed]
- Klinge B, Alberius P, Isaksson S, Jönsson J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg. 1992;50(3):241-9. [Crossref] [PubMed]
- Hämmerle CH, Chiantella GC, Karring T, Lang NP. The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Implants Res. 1998;9(3):151-62. [Crossref] [PubMed]
- Valentini P, Abensur D. Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss): a clinical study of 20 patients. Int J Periodontics Restorative Dent. 1997;17(3):232-41. [PubMed]
- di Nuzzo G, Luongo M, Parlato C, Moraci A. Cranial reconstruction using bioabsorbable calcified triglyceride bone cement. J Craniofac Surg. 2010;21(4):1170-4. [Crossref] [PubMed]
- Yilmaz S, Ozden B, Bas B, Altun G, Altunkaynak BZ. Could calcified triglyceride bone cement be an alternative graft material in maxillary sinus augmentation? J Craniofac Surg. 2017;28(1):97-103. [Crossref] [PubMed]
- Cooper SE, Durairaj VD, Ramakrishnan VR. Infectious complication following midface reconstruction with calcified triglyceride. Ophthalmic Plast Reconstr Surg. 2015;31(6):e157-9. [Crossref] [PubMed]
- Guarnieri G, Tecame M, Izzo R, Vassallo P, Sardaro A, Iasiello F, et al. Vertebroplasty using calcium triglyceride bone cement (Kryptonite?) for vertebral compression fractures. A single-centre preliminary study of outcomes at one-year follow-up. Interv Neuroradiol. 2014;20(5):576-82. [Crossref] [PubMed] [PMC]
- Fedak PW, Kolb E, Borsato G, Frohlich DE, Kasatkin A, Narine K, et al. Kryptonite bone cement prevents pathologic sternal displacement. Ann Thorac Surg. 2010;90(3):979-85. [Crossref] [PubMed]
- Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. J Clin Periodontol. 2003;30(7):636-43. [Crossref] [PubMed]
- Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987;18(2):213-25. [Crossref] [PubMed]
- Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM. Biology of cancellous bone grafts. Orthop Clin North Am. 1987;18(2):179-85. [Crossref] [PubMed]
- Zecha PJ, Schortinghuis J, van der Wal JE, Nagursky H, van den Broek KC, Sauerbier S, et al. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats. Int J Oral Maxillofac Surg. 2011;40(5):533-42. [Crossref] [PubMed]
- Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Fate of bone formed by guided tissue regeneration with or without grafting of Bio-Oss or Biogran. An experimental study in the rat. J Clin Periodontol. 2004;31(1):30-9. [Crossref] [PubMed]
- von Arx T, Cochran DL, Hermann JS, Schenk RK, Buser D. Lateral ridge augmentation using different bone fillers and barrier membrane application. A histologic and histomorphometric pilot study in the canine mandible. Clin Oral Implants Res. 2001;12(3):260-9. [Crossref] [PubMed]
- Bartee BK, Carr JA. Evaluation of a high-density polytetrafluoroethylene (n-PTFE) membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J Oral Implantol. 1995;21(2):88-95. [PubMed]
- Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672-6. [Crossref] [PubMed]
- Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9(1):13-29. [PubMed]
- Carini F, Longoni S, Amosso E, Paleari J, Carini S, Porcaro G. Bone augmentation with TiMesh. autologous bone versus autologous bone and bone substitutes. A systematic review. Ann Stomatol (Roma). 2014;5(Suppl 2 to No 2):27-36. [PubMed] [PMC]
- Keskin D, Gundoğdu C, Atac AC. Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Med Princ Pract. 2007;16(4):299-305. [Crossref] [PubMed]
- Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. [Crossref] [PubMed] [PMC]
- Doumit GD, Meisler E, Sidaoui J, Zins JE, Papay FA. The expansile properties of kryptonite relating to cranioplasty. J Craniofac Surg. 2014;25(3):880-3. [Crossref] [PubMed]
- Adams DJ, Barrero M, Jiang X, Rowe DW. Persistent osteoconductivity of calcium triglyceride bone cement in osteoporotic bone. Transactions of the 54th Annual Meeting of the Orthopaetic Research Society. 2008;33:1711. [Link]
- Jensen T, Schou S, Stavropoulos A, Terheyden H, Holmstrup P. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft: a systematic review. Clin Oral Implants Res. 2012;23(3):263-73. [Crossref] [PubMed]
- Uzun İ, Keskin C, Güler B. The sealing ability of novel Kryptonite adhesive bone cement as a retrograde filling material. J Dent Res Dent Clin Dent Prospects. 2016;10(3):189-93. [Crossref] [PubMed] [PMC]
- Jain G, Blaauw D, Chang S. A comparative study of two bone graft substitutes-InterOss® Collagen and OCS-B Collagen®. J Funct Biomater. 2022;13(1):28. [Crossref] [PubMed] [PMC]
.: İşlem Listesi