Objective: Sports organizations often seek ways to gain strategic advantage by using new technologies that will allow them to perform better in the sports industry. In pursuit of this strategic advantage, the sports industry often provides environments for the development or implementation of new technologies. This study aims to evaluate university students' intentions to use beacon technology-supported applications using the Mobile Service Acceptance Model (MSAM). For this purpose, the BeaconSupported Mobile Fitness Instructor Application (BS-MFIA) was developed and this program was tested on university students. Material and Methods: To evaluate the developed application, data were collected from university students at a fitness center of a state university in Ankara. The data were collected in a three-stage process. First, exploratory factor analysis was conducted with 178 university students. Second, confirmatory factor analysis was conducted on a different sample of 205 university students to evaluate the determined factor structure of the scale. After the validity and reliability studies were conducted, MSAM was tested using the structural equation modeling method. Results: Structural Equation Modeling analysis showed that perceived usefulness, perceived ease of use, trust, and context variables play a significant role in the intention to use BS-MFIA. Conclusion: The mobile services acceptance model revealed that perceived ease of use, perceived usefulness, trust, and context factors have a significant and positive effect on the intention to use BS-MFIA. The findings of this research contribute to the fields of technology and sports management by providing deeper insights into the adoption of beacon technology in the sports industry.
Keywords: Beacon; mobile service acceptance model; intention to use; fitness applications
Amaç: Spor organizasyonları genellikle spor endüstrisinde daha iyi performans göstermelerine olanak sağlayacak yeni teknolojileri kullanarak stratejik avantaj elde etmenin yollarını ararlar. Bu stratejik avantajın peşinde olan spor endüstrisi sıklıkla yeni teknolojilerin geliştirilmesi veya uygulanması için ortamlar sunar. Bu çalışma, Mobil Hizmet Kabul Modelini [Mobile Service Acceptance Model (MSAM)] kullanarak üniversite öğrencilerinin beacon teknolojisi destekli uygulamaları kullanma niyetlerini değerlendirmeyi amaçlamaktadır. Bu amaçla Beacon Destekli Mobil Fitness Eğitmen Uygulaması [Beacon-Supported Mobile Fitness Instructor Application (BS-MFIA)] geliştirilmiş ve bu program üniversite öğrencileri üzerinde test edilmiştir. Gereç ve Yöntemler: Geliştirilen uygulamayı değerlendirmek amacıyla Ankara ilindeki bir devlet üniversitesinin fitness merkezinde üniversite öğrencilerinden veriler toplanmıştır. Veriler üç aşamalı bir süreçte toplanmıştır. İlk olarak 178 üniversite öğrencisiyle açımlayıcı faktör analizi yapılmıştır. İkinci olarak, ölçeğin belirlenen faktör yapısını değerlendirmek amacıyla 205 üniversite öğrencisinden oluşan farklı bir örneklem üzerinde doğrulayıcı faktör analizi yapılmıştır. Geçerlilik ve güvenirlik çalışmaları yapıldıktan sonra MSAM, yapısal eşitlik modellemesi yöntemi kullanılarak test edilmiştir. Bulgular: Yapısal Eşitlik Modellemesi analizi, algılanan fayda, algılanan kullanım kolaylığı, güven ve bağlam değişkenlerinin BS-MFIA'yı kullanma niyetinde önemli bir rol oynadığını göstermiştir. Sonuç: Mobil hizmetleri kabul modeli, algılanan kullanım kolaylığı, algılanan fayda, güven ve bağlam faktörlerinin BS-MFIA'yı kullanma niyeti üzerinde anlamlı ve olumlu bir etkiye sahip olduğunu ortaya çıkarmıştır. Bu araştırmanın bulguları, spor endüstrisinde beacon teknolojisinin benimsenmesine ilişkin daha derin bilgiler sağlayarak teknoloji ve spor yönetimi alanlarına katkıda bulunmaktadır.
Anahtar Kelimeler: Beacon; mobil hizmet kabul modeli; kullanım niyeti; fitness uygulamaları
- Gruttner A. What we know and what we do not know about digital technologies in the sports industry. Twenty-fifth Americas Conference on Information Systems; August 2019; Cancún, Mexico. [Link]
- Business Research [Internet]. TBRC The Business Research Private Ltd. © 2023 [Cited: January 20, 2023]. Sports Global Market Report. Available from: [Link]
- Goebert C, Greenhalgh GP. A new reality: Fan perceptions of augmented reality readiness in sport marketing. Computers in Human Behavior. 2020;106:106231. [Crossref]
- Horbel C, Buck C, Diel S, Reith R, Walter Y. Stadium visitors' smartphone usage and digital resource integration. Sport, Business and Management: An International Journal. 2021;11(1):10-27. [Crossref]
- Stegmann P, Nagel S, Ströbel T. The digital transformation of value co-creation: a scoping review towards an agenda for sport marketing research. European Sport Management Quarterly. 2021;23(4):1221-48. [Crossref]
- Wordstream [Internet]. WordStream ©2022 [Cited: July 22, 2022]. 5 Things You Need to Know About Beacon Technology 5 Things You Need to Know About Beacon Technology Available from: [Link]
- Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly. 1989;13(3):319-40. [Crossref]
- Kwak DH, McDaniel SR. Using an extended technology acceptance model in exploring antecedents to adopting fantasy sports league websites. Int J of Sports Marketing and Sponsorship. 2011;12(3):43-56. [Crossref]
- Hur Y, Ko YJ, Claussen CL. Determinants of using sports web portals: an empirical examination of the sport website acceptance model. Int Journal of Sports Marketing and Sponsorship. 2012;13(3):169-88. [Crossref]
- Beldad AD, Hegner SM. Expanding the technology acceptance model with the inclusion of trust, social influence, and health valuation to determine the predictors of German users' willingness to continue using a fitness app: A structural equation modeling approach. Int J of Human-Computer Interaction. 2017;34(9):882-93. [Crossref]
- Byun H, Chiu W, Bae JS. Exploring the adoption of sports brand apps: An application of the modified technology acceptance model. Int J of Asian Business and Information Management. 2018;9(1):52-65. [Crossref]
- Cho H, Chi C, Chiu W. Understanding sustained usage of health and fitness apps: incorporating the technology acceptance model with the investment model. Technology in Society. 2020;63:101429:1-10. [Crossref]
- Dam L, Roy D, Atkin DJ, Rogers D. Applying an integrative technology adoption paradigm to health app adoption and use. Journal of Broadcasting and Electronic Media. 2018;62(4):654-72. [Crossref]
- Suh B, Han I. Effect of trust on customer acceptance of internet banking. Electronic Commerce Research and Applications. 2002;1(3-4):247-63. [Crossref]
- Perugini M, Bagozzi RP. The role of desires and anticipated emotions in goal-directed behaviours: broadening and deepening the theory of planned behaviour. Br J Soc Psychol. 2001;40(Pt 1):79-98. [Crossref] [PubMed]
- Gao S, Krogstie J, Siau K. Developing an instrument to measure the adoption of mobile services. Mobile Information Systems. 2011;7(1):45-67. [Crossref]
- Şencan H, Fidan Y. Likert verilerinin kullanıldığı keşfedici faktör analizlerinde normallik varsayımı ve faktör çıkarma üzerindeki etkisinin spss, factor ve prelis yazılımlarıyla sınanması [Normality assumption in the exploratory factor analysis with likert scale data and testing its effect on factor extraction]. BMIJ. 2020;8(1):640-87 doi: [Crossref]
- Bryman A, Cramer D. Quantitative data analysis with SPSS release 10 for Windows: A guide for social scientists. 1st ed. London: Routledge; 2001. [Crossref]
- Nunnally J. Psychometric Theory. 2nd ed. New York: McGraw-Hill; 1978.
- Koç T, Turan AH. Mobı̇l sabı̇s kabul ve kullanımı: Sakarya Ünı̇versı̇tesı̇'nde ampı̇rı̇k bı̇r değerlendı̇rme [Mobile sabis acceptance and use: an ampirical assessment at Sakarya University]. Bilgi Ekonomisi ve Yönetimi Dergisi. 2014;9(2):163-75. [Link]
- Tabachnick BG, Fidell LS. Using Multivariate Statistics. 6th ed. Boston: Pearson; 2013.
- Fornell C, Larcker DF. Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing Research. 1981;18:382-8. [Crossref]
- Teo T, Noyes J. An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: a structural equation modeling approach. Computers & Education. 2011;57(2):1645-53. [Crossref]
- Canhoto AI, Arp S. Exploring the factors that support adoption and sustained use of health and fitness wearables. Journal of Marketing Management. 2017;33(1-2):32-60. [Crossref]
- Wu CC, Huang Y, Hsu CL. Benevolence trust: a key determinant of user continuance use of online social networks. Information Systems and e-Business Management. 2014;12(2):189-211. [Crossref]
- Gefen D, Karahanna E, Straub DW. Trust and TAM in online shopping: An integrated model. MIS Quarterly. 2003;27(1):51-90. [Crossref]
- Mallat N, Rossi M, Tuunainen VK, Öörni A. The impact of use context on mobile services acceptance: the case of mobile ticketing. Information&Management. 2009;46(3):190-5. [Crossref]
- Bouwman H, van de Wijngaert L, de Vos H. Context-sensitive mobile services for police officers: A re-assessment of TAM. Proceedings of the 2008 7th International Conference on Mobile Business (ICMB '08); Jul 7-8, 2008; Barcelona, Spain. Washington, DC: IEEE Computer Society; 2008. pp. 191-200. [Crossref]
- Van de Wijngaert L, Bouwman H. Would you share? Predicting the potential use of a new technology. Telematics and Informatics. 2009;26(1):85-102. [Crossref]
.: İşlem Listesi