Transdermal ilaç taşıyıcı sistemler (TTS) deri yoluyla terapötik ajanların vücuda verilmesini sağlayan ve invaziv olmayan bir ilaç uygulama yoludur. Deri içten dışa doğru hipodermis, dermis, epidermis olmak üzere 3 tabakadan oluşmaktadır. Epidermisin en üst tabakası olan stratum korneum deriye nüfuz edecek ilaçlar da dâhil birçok yabancı madde için bariyer görevi üstlenmektedir. Bu nedenle deriden ilaç geçişini artırmak için çeşitli stratejiler geliştirilmiştir. Mikroiğneler, deriden ilaç geçişini fiziksel olarak artıran, küçük bir yama üzerine dizilmiş mikron büyüklüğündeki, sayıları birkaç ile birkaç yüz arasında değişen sıralı iğnelerden oluşan sistemlerdir. Biyolojik bariyerleri minimal invaziv ve ağrısız bir şekilde geçerler. TTS olarak kullanılmaları ile derinin bariyer işlevi nedeniyle deriden geçişi kısıtlı olan etkin maddelerin bu yolla verilmesi mümkün olabilmektedir. Bu nedenle mikroiğneler, transdermal ilaç uygulaması için umut vaat etmektedir. Mikroiğneler ilaç verme özelliklerine göre katı, içi boş, kaplanmış, çözünebilen ve hidrojel oluşturan mikroiğneler olarak 5'e ayrılmaktadır. Bu derleme kapsamında mikroiğne çeşitleri, üretim yöntemleri, 3D baskı yöntemi ile mikroiğne hazırlanması, mikroiğne üretimi ile ilgili yapılan çalışmalara örnekler ve mikroiğnelerde yapılan karakterizasyonlar ele alınmıştır. Mikroiğnelerin üretimi küçük yapıları nedeniyle zor olabilmektedir. 3D baskı yönteminin farmasötik alanda kullanımının artmasıyla hızlı, kişiselleştirilmiş, kolay ve sürdürülebilir bir şekilde mikroiğne üretimi de mümkün olabilmektedir. Yine derleme kapsamında mikroiğne üretimine imkân veren 3D baskı yöntemleri karşılaştırarak incelenmiştir.
Anahtar Kelimeler: Transdermal ilaç taşıyıcı sistem; mikroiğne; mikroiğne üretimi için 3D baskı yöntemi
Transdermal drug delivery systems (TDS) are a noninvasive way of delivering therapeutic agents through the skin. The skin consists of 3 layers: hypodermis, dermis and epidermis from inside to outside. The stratum corneum, the upper layer of the epidermis, acts as a barrier for many foreign substances, including drugs that will penetrate the skin. Therefore, various strategies have been developed to increase drug passage through the skin. Microneedles are systems consisting of micron-sized needles, ranging in number from a few to several hundred, arranged on a small patch, which physically increase drug passage through the skin. They pass through biological barriers minimally invasively and painlessly. With their use as a transdermal drug delivery system, it is possible to deliver active ingredients whose passage through the skin is limited due to the barrier function of the skin. For this reason, microneedles are promising for transdermal drug delivery. Microneedles are divided into 5 types as solid, hollow, coated, soluble and hydrogel forming microneedles according to their drug delivery properties. Within the scope of this review, microneedle types, production methods, microneedle preparation with 3D printing method, examples of microneedle production studies and characterizations of microneedles are discussed. The production of microneedles can be difficult due to their small structures. With the increasing use of 3D printing method in the pharmaceutical field, it is possible to produce microneedles in a fast, personalized, easy and sustainable way. Again, within the scope of the review, 3D printing methods that enable microneedle production were analyzed and compared.
Keywords: Transdermal drug delivery; microneedle; 3D printing method for microneedle production
- Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1):24. [Crossref] [PubMed] [PMC]
- Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361-80. [Crossref] [PubMed]
- Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, et al. Microneedles: characteristics, materials, production methods and commercial development. Micromachines (Basel). 2020;11(11):961. [Crossref] [PubMed] [PMC]
- Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. [Crossref] [PubMed] [PMC]
- Erkuş H. Transdermal ilaç dağıtımı için antibiyotik yüklü GelMA mikro iğnelerin üretimi ve karakterizasyonu [Yüksek lisans tezi]. İstanbul: Yıldız Teknik Üniversitesi; 2023. [Erişim tarihi: 18 Kasım 2024]. Erişim linki: [Link]
- Özcan K, İlbasmış S. Transdermal ve dermal terapötik sistemlerde ilaç geçişini artırma stratejileri: geleneksel derleme [Strategies to enhance drug pass in transdermal and dermal therapeutic systems: traditional review]. J Lit Pharm Sci. 2023;12(3):228-41. [Crossref]
- Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics. 2020;12(6):569. [Crossref] [PubMed] [PMC]
- Li R, Zhang L, Jiang X, Li L, Wu S, Yuan X, et al. 3D-printed microneedle arrays for drug delivery. J Control Release. 2022;350:933-48. [Crossref] [PubMed]
- Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8:177-200. [Crossref] [PubMed]
- Jeong HR, Lee HS, Choi IJ, Park JH. Considerations in the use of microneedles: pain, convenience, anxiety and safety. J Drug Target. 2017;25(1):29-40. [Crossref] [PubMed]
- Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64(1):11-29. [Crossref] [PubMed]
- Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51(5):503-17. [Crossref] [PubMed] [PMC]
- Larrañeta E, Lutton RE, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R. 2016;104:1-32. [Crossref]
- Gupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148-55. [Crossref] [PubMed] [PMC]
- Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-58. [Crossref] [PubMed]
- Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16):2815. [Crossref] [PubMed] [PMC]
- Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release. 2010;148(3):266-82. [Crossref] [PubMed]
- Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7(3):90-105. [Crossref] [PubMed] [PMC]
- Li S, Li W, Prausnitz M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv Transl Res. 2018;8(5):1043-52. [Crossref] [PubMed] [PMC]
- Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227-37. [Crossref] [PubMed] [PMC]
- Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119-33. [Crossref] [PubMed]
- Wang C, Jiang X, Zeng Y, Terry RN, Li W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. Med Drug Discov. 2022;13;100118. [Crossref]
- Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68. [Crossref] [PubMed] [PMC]
- Nagarkar R, Singh M, Nguyen HX, Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Deliv Sci Technol. 2020;59:101923. [Crossref]
- Carreño G, Pereira A, Ávila-Salas F, Marican A, Andrade F, Roca-Melendres MM, et al. Development of "on-demand" thermo-responsive hydrogels for anti-cancer drugs sustained release: Rational design, in silico prediction and in vitro validation in colon cancer models. Mater Sci Eng C Mater Biol Appl. 2021;131:112483. [Crossref] [PubMed]
- Filho D, Guerrero M, Pariguana M, Marican A, Durán-Lara EF. Hydrogel-based microneedle as a drug delivery system. Pharmaceutics. 2023;15(10):2444. [Crossref] [PubMed] [PMC]
- Swain S, Singh AP, Yadav RK. A review on polymer hydrogel and polymer microneedle based transdermal drug delivery system. Mater. Today Proc. 2022;61:1061-6. [Crossref]
- Courtenay AJ, McAlister E, McCrudden MTC, Vora L, Steiner L, Levin G, et al. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release. 2020;322:177-86. [Crossref] [PubMed] [PMC]
- Chircov C, Grumezescu AM. Microelectromechanical Systems (MEMS) for biomedical applications. Micromachines (Basel). 2022;13(2):164. [Crossref] [PubMed] [PMC]
- Tarbox TN, Watts AB, Cui Z, Williams RO 3rd. An update on coating/manufacturing techniques of microneedles. Drug Deliv Transl Res. 2018;8(6):1828-43. [Crossref] [PubMed]
- McGrath MG, Vucen S, Vrdoljak A, Kelly A, O'Mahony C, Crean AM, et al. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86(2):200-11. [Crossref] [PubMed]
- Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release. 2013;170(3):430-6. [Crossref] [PubMed]
- Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11(6):329-37. Erratum in: Diabetes Technol Ther. 2009;11(7):471. [Crossref] [PubMed] [PMC]
- Yadav PK, Das S, Das MK. 3D-Microneedles: a novel approach for skin directed delivery and its application. Polym Plast Technol Mater. 2023;62(11):1364-93. [Crossref]
- Çobanoğlu E, Varan C, Bilensoy E. Yazıcılar ve baskı teknolojilerinin farmasötik alanda kullanımı [Use of printers and printing technologies in pharmaceutical field]. Fabad J Pharm Sci. 2021;46(1):43-78. [Link]
- Gültekin HE. 3D baskılama tekniği ile ilaç formülasyonlarının hazırlanmasına yönelik çalışmalar [Doktora tezi]. Ankara: Gazi Üniversitesi; 2020. [Erişim tarihi: 18 Kasım 2024]. Erişim linki: [Link]
- Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 2018;18(8):1223-30. [Crossref] [PubMed]
- Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The role of 3D printing technology in microengineering of microneedles. Small. 2022;18(18):e2106392. [Crossref] [PubMed]
- Saydam M. Üç boyutlu baskı tekniği ile yetim ilaç içeren katı ilaç formülasyonlarının tasarımla kalite (Qbd) prensiplerine dayanılarak geliştirilmesi [Doktora tezi]. Ankara: Gazi Üniversitesi; 2021. [Erişim tarihi: 18 Kasım 2024] Erişim Linki: [Link]
- Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O'Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5:42. [Crossref] [PubMed] [PMC]
- Olowe M, Parupelli SK, Desai S. A review of 3D-printing of microneedles. Pharmaceutics. 2022;14(12):2693. [Crossref] [PubMed] [PMC]
- Boehm RD, Miller PR, Hayes SL, Monteiro-Riviere NA, Narayan RJ. Modification of microneedles using inkjet printing. AIP Adv. 2011;1(2):22139. [Crossref] [PubMed] [PMC]
- Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, et al. 3D printing-a "Touch-Button" approach to manufacture microneedles for transdermal drug delivery. Pharmaceutics. 2021;13(7):924. [Crossref] [PubMed] [PMC]
- Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P, Modi R, et al. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2006;2(3):267-75. [Crossref] [PubMed]
- Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285-93. [Crossref] [PubMed]
- Krieger KJ, Liegey J, Cahill EM, Bertollo N, Lowery MM, O'Cearbhaill ED. Development and evaluation of 3D‐printed dry microneedle electrodes for surface electromyography. Adv Mater Technol. 2020;5(10):2000518. [Crossref]
- Gieseke M, Senz V, Vehse M, Fiedler S, Irsig R, Hustedt M, et al. Additive manufacturing of drug delivery systems. BIOMED ENG-BIOMED TE. 2012;57(SI-1-Track-S):398-401. [Crossref]
- Xenikakis I, Tsongas K, Tzimtzimis EK, Zacharis CK, Theodoroula N, Kalogianni EP, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm. 2021;597:120303. [Crossref] [PubMed]
- Sabri AH, Kim Y, Marlow M, Scurr DJ, Segal J, Banga AK, et al. Intradermal and transdermal drug delivery using microneedles - Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev. 2020;153:195-215. [Crossref] [PubMed]
- Wang J, Wang H, Lai L, Li Y. Preparation of microneedle array mold based on MEMS lithography technology. Micromachines (Basel). 2020;12(1):23. [Crossref] [PubMed] [PMC]
- Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine. 2005;1(2):184-90. [Crossref] [PubMed]
- Aoyagi S, Izumi H, Isono Y, Fukuda M, Ogawa H. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens Actuators A: Phys. 2007;139(1-2):293-302. [Crossref]
- Evens T, Malek O, Castagne S, Seveno D, Van Bael A. Controlling the geometry of laser ablated microneedle cavities in different mould materials and assessing the replication fidelity within polymer injection moulding. J. Manuf. Process. 2021;62:535-45. [Crossref]
- Wu L, Takama N, Park J, Kim B, Kim J, et al. Shadow mask assisted droplet-born air-blowing method for fabrication of dissoluble microneedle. In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2017 April 9-12; Los Angeles, CA. USA; 2017. p.456-9. [Crossref] [PMC]
- Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-208. [Crossref] [PubMed]
- Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JFC, Lamprou DA, Douroumis D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C Mater Biol Appl. 2019;102:743-55. [Crossref] [PubMed]
- Yao W, Li D, Zhao Y, Zhan Z, Jin G, Liang H, Yang R. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines (Basel). 2019;11(1):17. [Crossref] [PubMed] [PMC]
- Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release. 2018;284:122-32. [Crossref] [PubMed]
.: İşlem Listesi