Organizmalar 24 saatlik gündüz-gece döngüsüne adapte olmuşlardır. Bu sirkadiyen ritimler, fizyolojik ve metabolik süreçleri kontrol eden içsel bir hücresel mekanizma tarafından üretilmişlerdir. Bilindiği üzere yaşlanma sürecinde sirkadiyen sistem zayıflamakta ve biyolojik değişimler yavaşlamaktadır. Sirkadiyen genlerin genetik olarak değişimi ve moleküler saatin bozulması yaşlanma süreciyle ilişkilidir. Ayrıca çevresel koşullar da (Örn; Kalori kısıtlaması) yaşlanma sürecine etki eden önemli faktörlerdendir. Besinsel sensörleri içeren hücre içi yolaklar, yaşlanma sürecini kontrol eden hücresel ve epigenetik mekanizmaları etkilemektedirler. Yapılan çalışmalarla bu yolakların hem yaşlanma sürecinin düzenlenmesinde hem de moleküler saatin kontrolünde görev aldığı gösterilmiştir. Bu nedenle, sirkadiyen saatin ve besin algılama yolaklarının kontrolüne yönelik terapötik stratejiler, yaşlanma sürecindeki olumsuz etkileri azaltarak, bu sürecin daha verimli olmasını sağlayacak gibi görünmektedir.
Anahtar Kelimeler: Sirkadiyen ritim; yaşlanma; epigenetik
Organizations have been adapting to the 24-hour day/night cycle. These circadian rhythms are produced by an internal cellular mechanism that controls physiological and metabolic processes. In the aging process the circadian system is weakening and biological changes are slowing down. The genetic change of circadian genes and the deterioration of the molecular clock are related to the aging process. In addition, environmental conditions (eg; calorie restriction) are important factors affecting the aging process. Intracellular pathways involving nutritional sensors influence cellular and epigenetic mechanisms that control the aging process. Studies have shown that these pathways are involved in both the modulation of the aging process and the control of the molecular clock. Therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging and make more efficient this process.
Keywords: Circadian rhythm; aging; epigenetics
- Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of mammalian physiology by interconnected circadian and feeding rhythms. Front Endocrinol (Lausanne). 2017;8;8:42. [Crossref] [PubMed] [PMC]
- Lim C, Allada R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci. 2013;16(11):1544-50. [Crossref] [PubMed]
- Foster RG, Peirson SN, Wulff K, Winnebeck E, Vetter C, Roenneberg T. Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci. 2013;119:325-46. [Crossref] [PubMed]
- Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950-61. [Crossref] [PubMed] [PMC]
- Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257-63. [Crossref]
- Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848-60. [Crossref] [PubMed] [PMC]
- Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet. 2005;6(7):544-56. [Crossref] [PubMed] [PMC]
- Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445-62. [Crossref] [PubMed] [PMC]
- Weger M, Diotel N, Dorsemans AC, Dickmeis T, Weger BD. Stem cells and the circadian clock. Dev Biol. 2017;431(2):111-23. [Crossref]
- Hosoda H, Kato K, Asano H, Ito M, Kato H, Iwamoto T, et al. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol Brain. 2009;2:34. [Crossref] [PubMed] [PMC]
- Lande-Diner L, Boyault C, Kim JY, Weitz CJ. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci U S A. 2013;110(40):16021-6. [Crossref] [PubMed] [PMC]
- Stashi E, Lanz RB, Mao J, Michailidis G, Zhu B, Kettner NM, et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 2014;6(4):633-45. [Crossref] [PMC]
- Takahashi JS. Molecular components of the circadian clock in mammals. Diabetes Obes Metab. 2015;17 Suppl 1:6-11. [Crossref] [PubMed] [PMC]
- Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, et al. Rev-erb? and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012;26(7):657-67. [Crossref] [PubMed] [PMC]
- Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-? and REV-ERB-β. Nature. 2012;485(7396):123-7. [Crossref] [PubMed] [PMC]
- Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REVERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251-60. [Crossref]
- Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43(4):527-37. [Crossref] [PubMed]
- Everett LJ, Lazar MA. Nuclear receptor Rev-erb?: up, down, and all around. Trends Endocrinol Metab. 2014;25(11):586-92. [Crossref] [PMC]
- Bollinger T, Schibler U. Circadian rhythms-from genes to physiology and disease. Swiss Med Wkly. 2014;144:w13984. [Crossref] [PubMed]
- Wu Y, Tang D, Liu N, Xiong W, Huang H, Li Y, et al. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017;25(1):73-85. [Crossref] [PubMed]
- Liu F, Chang HC. Physiological links of circadian clock and biological clock of aging. Protein Cell. 2017;8(7):477-88. [Crossref] [PubMed] [PMC]
- Adamovich Y, Ladeuix B, Golik M, Koeners MP, Asher G. Rhythmic oxygen levels reset circadian clocks through HIF1?. Cell Metab. 2017;25(1):93-101. [Crossref] [PubMed]
- Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, et al. Circadian Clock interaction with HIF1? mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017;25(1):86-92. [Crossref] [PubMed] [PMC]
- Reddy AB, Rey G. Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu Rev Biochem. 2014;83:165-89. [Crossref] [PubMed] [PMC]
- Liu F, Chang HC. Physiological links of circadian clock and biological clock of aging. Protein Cell. 2017;8(7):477-88. [Crossref] [PubMed] [PMC]
- Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217. [Crossref] [PMC]
- Kondratova AA, Kondratov RV. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 2012;13(5):325-35. [Crossref] [PubMed] [PMC]
- Halberg F, Bittner JJ, Gully RJ, Albrecht PG, Brackney EL. 24-hour periodicity and audiogenic convulsions in I mice of various ages. Proc Soc Exp Biol Med. 1955;88(2):169-73. [Crossref] [PubMed]
- Halberg J, Halberg E, Regal P, Halberg F. Changes with age characterize circadian rhythms in telemetered core temperature of stroke-prone rats. J Gerontol. 1981;36(1):28-30. [Crossref]
- Descovich GC, Montalbetti N, Kuhl JF, Rimondi S, Halberg F, Ceredi C. Age and catecholamine rhythms. Chronobiologia. 1974;1 (2):163-71.
- Nelson W, Bingham C, Haus E, Lakatua DJ, Kawasaki T, Halberg F. Rhythm-adjusted age effects in a concomitant study of twelve hormones in blood plasma of women. J Gerontol. 1980;35(4):512-9. [Crossref]
- Cugini P, Scavo D, Halberg F, Schramm A, Pusch HJ, Franke H. Methodologically critical interactions of circadian rhythms, sex and aging characterize serum aldosterone of the female adrenopause. J Gerontol. 1982;37(4): 403-11. [Crossref]
- Otsuka K, Cornelissen G, Halberg F. Chronomics and continuous ambulatory blood pressure monitoring-vascular chronomics: from 7-day/24-hour to lifelong monitoring. University of Minnesota. Doi: 10.1007/978-4-431-54631-3. [Crossref]
- Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253-62. [Crossref] [PubMed] [PMC]
- Weindruch R. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol Pathol. 1996;24(6):742-5. [Crossref] [PubMed]
- McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr. 1935;10(1):63-79. [Crossref]
- Halberg F, Visscher MB. A difference between the effects of dietary calorie restriction on the estrous cycle and on the 24-hour adrenal cortical cycle in rodents. Endocrinology. 1952;51(4):329-35. [Crossref] [PubMed]
- Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448-60. [Crossref] [PubMed] [PMC]
- Cao R, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, et al. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron. 2013;79(4):712-24. [Crossref] [PubMed] [PMC]
- Tevy MF, Giebultowicz J, Pincus Z, Mazzoccoli G, Vinciguerra M. Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends Endocrinol Metab. 2013;24(5):229-37. [Crossref] [PubMed] [PMC]
- Orozco-Solis R, Sassone-Corsi P. Circadian clock: linking epigenetics to aging. Curr Opin Genet Dev. 2014;26:66-72. [Crossref] [PubMed] [PMC]
- Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-40. [Crossref] [PubMed] [PMC]
- Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 2007;450(7172):1086-90. [Crossref] [PubMed]
- Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317-28. [Crossref] [PubMed]
- Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624-38. [Crossref] [PubMed] [PMC]
- Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324(5927):654-7. [Crossref] [PubMed] [PMC]
- Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324 (5927):651-4. [Crossref] [PubMed] [PMC]
- Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81(3):471-83. [Crossref] [PubMed] [PMC]
- Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416-30. [Crossref] [PubMed] [PMC]
- Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michan S, et al. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metabol. 2011;14(3):301-12. [Crossref] [PubMed] [PMC]
- Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R, et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010;12(1): 78-87. [Crossref] [PubMed] [PMC]
- Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448-60. [Crossref] [PubMed] [PMC]
- Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, et al. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci U S A. 2013;110(9):3339-44. [Crossref] [PubMed] [PMC]
- Peek CB, Affinati AH, Ramsey KM, Kuo HY, Yu W, Sena LA, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science. 2013;342(6158): 1243417. [Crossref] [PubMed] [PMC]
- Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013;3(2):319-27. [Crossref] [PubMed] [PMC]
- Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Vares G, Honda K, et al. ROS stress resets circadian clocks to coordinate pro-survival signals. PLoS One. 2013;8(12):e82006. [Crossref] [PubMed] [PMC]
- Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638-43. [Crossref] [PubMed] [PMC]
- Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, et al. The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell. 2015;161(5):1138-51. [Crossref] [PubMed] [PMC]
- Khapre RV, Kondratova AA, Patel S, Dubrovsky Y, Wrobel M, Antoch MP, et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany NY). 2014;6(1):48-57. [Crossref] [PubMed] [PMC]
- Cao R, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, et al. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron. 2013;79(4):712-4. [Crossref] [PubMed] [PMC]
- Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, et al. Activation of 5-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem. 2007;282(29):20794-8. [Crossref] [PubMed]
- Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437-40. [Crossref] [PubMed] [PMC]
- Lopez M, Nogueiras R, Tena-Sempere M, Dieguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol. 2016;12(7):421-32. [Crossref] [PubMed]
.: Process List