Objective: Hard clustering approaches may cause some of the relationships to be overlooked due to their nature of algorithms especially in genetic datasets. But hidden relationships can be revealed by fuzzy approaches. Purpose of this study was evaluating effect of microRNAs (miRNA) on children with acute lymphoblastic leukaemia (ALL) by using miRNA expression data obtained from bone marrow samples with sets containing different numbers of elements of fuzzy C-means (FCM). Material and Methods: miRNA expression levels of 43 newly diagnosed ALL patients and 14 healthy subjects were analysed via FCM. Clusters containing different numbers of miRNAs were evaluated, common properties in messenger RNA (mRNA) pathways were investigated and new pathways associated with ALL and cancer were described via miRNA target prediction tools. Results: Significant miRNA profile was compared to control cases. Only 46 out of 108 miRNAs were found to be significantly upregulated or downregulated. Of forty six miRNAs: 8 miRNAs were labelled as tumour suppressor (17.4%), 17 miRNAs were labelled as onco-miR (37.0%) and 21 miRNAs could not be labelled (45.6%) for hematological malignancy. Fourteen (%30.4) miRNAs were found to be apoptosis-related, 27 miRNAs were in leukemia-related (58.7%) and 15 labelled miRNAs were related with cancer pathways (32.6%). hsa-miR-181b, hsa-miR-146a, hsa-miR-155, hsa-miR-181c-5p, hsa-miR-7-1-3p, hsa-miR-708-5p onco-miRs constituted a set. These miRNAs targeted 801 common mRNAs (p<0.05). When this sub-cluster was searched in the literature and miRNA target prediction tools system, it was found to be involved in cancer-related pathways except ALL. Conclusion: Hidden relation-ships can be defined by fuzzy approaches and those pathways may pro-vide guidance to open up new horizons in the field of miRNA studies.
Keywords: Fuzzy C means algorithm; miRNA; childhood cancers; miRNA target prediction tools
Amaç: Sert kümeleme yaklaşımları, özellikle genetik veri setle-rinde algoritmaların doğası gereği bazı ilişkilerin gözden kaçmasına neden olabilmektedir. Ancak gizli ilişkiler, bulanık yaklaşımlarla ortaya çıkarılabilir. Bu çalışmanın amacı, mikroRNA'ların (miRNA) akut lenfoblastik lösemili (ALL) çocuklar üzerindeki etkisini, bulanık C-ortalaması (FCM) ile elde edilen ve farklı sayıda kümeleri içeren setlerle kemik iliği örneklerinden elde edilen miRNA ekspresyon verilerini kul-lanarak değerlendirmektir. Gereç ve Yöntemler: Kırk üç yeni tanılı ALL hastası ve 14 sağlıklı çocuğun miRNA ekspresyon seviyeleri FCM ile analiz edilmiştir. Farklı sayıda miRNA içeren kümeler değerlendiri-lerek, mesajcı RNA (mRNA) yolaklarındaki ortak özellikler araştırılmış, ALL ve kanserle ilişkili yeni yolaklar miRNA hedef tahmin araçlarıyla tanımlanmıştır. Bulgular: Anlamlı miRNA düzeyleri, kontrol vakalarıy-la karşılaştırılmıştır. Yüz sekiz miRNA'dan sadece 46'sının önemli öl-çüde yüksek regüle veya düşük regüle edildiği bulunmuştur. Kırk altı miRNA'dan, 8 (%17,4) miRNA tümör baskılayıcı, 17 (%37,0) miRNA onco-miR olarak tanımlanırken, 21 (%45,6) miRNA hematolojik malignite için tanımlanamamıştır. Tanımlanan 14 (%30,4) miRNA apoptozla ilişkili, 27 (%58,7) miRNA lösemi ile ilişkili ve 15 (%32,6) miRNA kanser yolakları ile ilişkili saptanmıştır. hsa-miR-181b, hsa-miR-146a, hsa-miR-155, hsa-miR-181c-5p, hsa-miR-7-1-3p, hsa-miR-708-5p onko-miR'leri bir küme oluşturmaktadır. Bu miRNA'lar, 801 ortak mRNA'yı hedeflemiştir (p<0,05). Literatürde ve miRNA hedef tahmin araçları sisteminde, bu alt küme ilişkisi araştırıldığında, ALL dışındaki kansere bağlı yolaklarda rol oynadıkları görülmüştür. Sonuç: Gizli ilişkiler bulanık yaklaşımlarla tanımlanabilir ve bu yolaklar, miRNA çalışmaları alanında yeni ufuklar açmak için rehberlik sağlaya-bilir.
Anahtar Kelimeler: Bulanık C ortalamalar algoritması; miRNA; çocukluk çağı kanserleri; miRNA hedef tahmin araçları
- Greene CS, Tan J, Ung M, Moore JH, Cheng C. Big data bioinformatics. Journal of Cellular Physiology. 2014;229(12):1896-1900. [Crossref] [PubMed] [PMC]
- Vardhan A, Sarmah P, Das A. A Comprehensive Analysis of the Most Common Hard Clustering Algorithms. In: Smys S, Bestak R, Rocha Á, eds. Inventive Computation Technologies. ICICIT 2019. Lecture Notes in Networks and Systems, Springer, Cham. vol 98. 2020. [Crossref]
- Scaria T, Stephen G, Mathew J. Gene expression data analysis using fuzzy C-means clustering technique. International Journal of Computer Applications. 2016;135(8):33-6. [Crossref]
- Li X, Lu X, Tian J, Gao P, Kong H, Xu G, et al. Application of fuzzy c-means clustering in data analysis of metabolomics. Anal Chem. 2009;1;81(11):4468-75. [Crossref] [PubMed]
- Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3-4):369-78. [Crossref] [PubMed]
- Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11(12):1753-61. [Crossref] [PubMed] [PMC]
- Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB, et al. Common features of microRNA target prediction tools. Front Genet. 2014;18;5:23. [Crossref] [PubMed] [PMC]
- Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly. 1994;125(2):167-88. [Crossref]
- Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152-7. [Crossref] [PubMed] [PMC]
- Laganà A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R, et al. miRò: a miRNA knowledge base. Database (Oxford). 2009;2009:bap008. [Crossref] [PubMed] [PMC]
- Wang YF, Yu ZG, Anh V. Fuzzy C-means method with empirical mode decomposition for clustering microarray data. Int J Data Min Bioinform. 2013;7(2):103-17. [Crossref] [PubMed]
- Macneil LT, Walhout AJM. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Research. 2011;21:645-57. [Crossref] [PubMed] [PMC]
- Lloyd A. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Methods of Biochemical Analysis, 43). Briefings in Bioinformatics. 2001;2(4):407-8. [Crossref]
- Bezdek J. Corrections for "FCM: the fuzzy C-means clustering algorithm." Computers & Geosciences. 1985;11(5):660. [Crossref]
- Kim SY, Lee JW, Bae JS. Effect of data normalization on fuzzy clustering of DNA microarray data. BMC Bioinformatics. 2006;7:134. [Crossref] [PubMed] [PMC]
- Duyu M, Durmaz B, Gunduz C, Vergin C, Yilmaz Karapinar D, Aksoylar S, et al. Prospective evaluation of whole genome microRNA expression profiling in childhood acute lymphoblastic leukemia. Biomed Res Int. 2014;2014:967585. [Crossref] [PubMed] [PMC]
- [Link] (Erişim tarihi 14.04.2021)
- [Link] (Erişim tarihi 14.04.2021)
- KEGG Pathway Database [Internet]. Wiring diagrams of molecular interactions, reactions and relations. Available from: [Link] (Erişim Tarihi: 14.04.2021)
- [Link] (Erişim tarihi 14.04.2021)
- TargetScanHuman [Internet]. Search for predicted microRNA targets in mammals. © 2006-2018 Whitehead Institute for Biomedical Research. Available from: (erişim tarihi: 14.04.2021) [Link]
- Del Vescovo V, Denti MA. microRNA and Lung Cancer. Adv Exp Med Biol. 2015;889:153-77. [Crossref] [PubMed]
- Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;15;65(16):7065-70. [Crossref] [PubMed]
- Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005;8;102(10):3627-32. [Crossref] [PubMed] [PMC]
- Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. PNAS. 2007;104(41):16170-5. https://www.pnas.org/content/104/41/16170 [Crossref] [PubMed] [PMC]
- Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;6;129(1):147-61. [PubMed]
- Ma Z, Qiu X, Wang D, Li Y, Zhang B, Yuan T, et al. MiR-181a-5p inhibits cell proliferation and migration by targeting Kras in non-small cell lung cancer A549 cells. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):630-8. [Crossref] [PubMed]
- Li Y, Kuscu C, Banach A, Zhang Q, Pulkoski-Gross A, Kim D, et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res. 2015;1;75(13):2674-85. [Crossref] [PubMed] [PMC]
- He S, Zeng S, Zhou ZW, He ZX, Zhou SF. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. Drug Des Devel Ther. 2015;18;9:1103-75. [Crossref] [PubMed] [PMC]
- Korhan P, Erdal E, Atabey N. MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met. Biochem Biophys Res Commun. 2014;8;450(4):1304-12. [Crossref] [PubMed]
- Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L, et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood. 2010;13;115(19):3916-22. [Crossref] [PubMed] [PMC]
- Pekarsky Y, Croce CM. Role of miR-15/16 in CLL. Cell Death Differ. 2015;22(1):6-11. [Crossref] [PubMed] [PMC]
- Zanesi N, Balatti V, Bottoni A, Croce CM, Pekarsky Y. Novel insights in molecular mechanisms of CLL. Curr Pharm Des. 2012;18(23):3363-72. [Crossref] [PubMed]
- Wu J, Ji A, Wang X, Zhu Y, Yu Y, Lin Y, et al. MicroRNA-195-5p, a new regulator of Fra-1, suppresses the migration and invasion of prostate cancer cells. J Transl Med. 2015;13;289:2-15. [Link]
- Xu H, Hu YW, Zhao JY, Hu XM, Li SF, Wang YC, et al. MicroRNA-195-5p acts as an anti-oncogene by targeting PHF19 in hepatocellular carcinoma. Oncol Rep. 2015;34(1):175-82. [Crossref] [PubMed]
- Luo Q, Wei C, Li X, Li J, Chen L, Huang Y, et al. MicroRNA-195-5p is a potential diagnostic and therapeutic target for breast cancer. Oncol Rep. 2014;31(3):1096-102. [Crossref] [PubMed] [PMC]
- Luo Q, Zhang Z, Dai Z, Basnet S, Li S, Xu B, et al. Tumor-suppressive microRNA-195-5p regulates cell growth and inhibits cell cycle by targeting cyclin dependent kinase 8 in colon cancer. Am J Transl Res. 2016;15;8(5):2088-96. [PubMed] [PMC]
- Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva WA Jr, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 2007;40(11):1435-40. [Crossref] [PubMed]
- Zhi F, Wang Q, Deng D, Shao N, Wang R, Xue L, et al. MiR-181b-5p downregulates NOVA1 to suppress proliferation, migration and invasion and promote apoptosis in astrocytoma. PLoS One. 2014;9;9(10):e109124. [PubMed] [PMC]
- Retraction Statement: "Overexpression of miR-708 and its targets in the childhood common precursor B-cell ALL" by Xue Li, MMed, Dong Li, PhD, Yong Zhuang, MMed, Qing Shi, BSc, Wei Wei, MMed, and Xiuli Ju, MD, PhD. Pediatr Blood Cancer. 2017;64(5). [Crossref] [PubMed]
- Uzhga-Rebrov O, Kule?hova G. Problems of fuzzy clustering of microarray data. IT and Management Science. 2010;44(1):51-4. [Crossref]
.: Process List