Malzeme bilimi ve nanoteknolojideki gelişmeler, nanomalzeme temelli ilaçları kanser tedavisi için potansiyel bir araç olarak ortaya çı- karmıştır. Böylece antikanser ilaçlarının nanomalzemeden yapılmış bir paketleme sistemine yüklenerek kanserli hücreye hedeflenmesi, antikanser ilaçların toksisitesini azaltmak, etkinliğini ve dolaşım sürecini artırmak ve hatta hücre yüzey belirtecine özgü antijenler aracılığı ile ilacı, kanser hücrelerine özgü hale getirilmesi mümkün olmuştur. Üçlü negatif meme kanseri, östrojen ve progesteron hormon reseptörlerinin olmayışı ve İnsan epidermal büyüme faktör reseptörü-2 (HER2)'nin ifade edilmemesiyle karakterize olan, tüm meme kanseri vakalarının %15-20'sini oluşturan oldukça invaziv ve metastatik özelliklere sahip kötü prognoz ile seyreden kötü huylu tümörlerden biridir. Üçlü negatif meme kan seri olan hastalar, hücre yüzeyi reseptörlerini hedef alan hormonal veya trastuzumab bazlı tedavilerden fayda görmez. Hâlâ birçok kemotera pötik ilaç, etkili dozlarda tümör bölgesine ulaşamamaktadır ve genel likle yüksek sistemik toksisite ve zayıf farmakokinetik özellik göstermektedir. Bu nedenle üçlü negatif meme kanseri tedavisindeki klinik zorlukların üstesinden gelmek için potansiyel terapötik seçenek- ler olarak geniş bir yelpazede nanoteknoloji tabanlı platformlar araştı- rılmaktadır. Terapötik ajanların, meme kanseri tümörlerine verilme etkinliğini artırmak için tümör hücrelerini, tümör vaskülarizasyonunu ve tümör mikro ortamını hedeflemek için çeşitli nanopartikül ilaç taşı- yıcıları geliştirilmiştir. Bu derlemede, üçlü negatif meme kanserinin na- nomateryaller aracılığı ile tedavi stratejilerini ayrıntılı bir şekilde tartışıyoruz ve bu konuda bir bakış açısı sunmayı hedefliyoruz.
Anahtar Kelimeler: Üçlü negatif meme kanseri; nanomalzeme; antikanser ilaç; ilaç taşıma sistemleri
Advances in materials science and nanotechnology have revealed nanomaterial-based drugs as a potential tool for cancer treat- ment. Thus, it has been possible to target anticancer drugs to cancer cells by loading them into a packaging system made of nanomaterials, to reduce the toxicity of anticancer drugs, to increase their efficiency and circulation process, and even to make the drug specific to cancer cells by means of cell surface marker-specific antigens. Triple negative breast cancer, is one of the malignant tumors characterized by the absence of estrogen and progesterone hormone receptors and under-expression of Human epidermal growth factor receptor-2 (HER2), is highly invasive, accounting for 15-20% of all breast cancer cases, and has a poor prognosis with metastatic features. Patients with triple negative breast cancer do not benefit from hormonal or trastuzumab-based treatments that target cell surface receptors. Still, many chemotherapeutic drugs do not reach the tumor site in effective doses and generally show high systemic toxicity and poor pharmacokinetics. Therefore, a wide range of nanotechnology-based platforms are being explored as potential therapeutic options to overcome the clinical challenges of triple negative breast cancer ther apy. To increase the efficacy of delivering therapeutic agents to breast cancer tumors, various nanoparticle drug carriers have been developed to target tumor cells, tumor vascularisation and tumor microenviron ment. In this review, we discuss the treatment strategies of triple nega tive breast cancer through nanomaterials in detail and we aim to present a perspective on this issue.
Keywords: Triple negative breast cancer; nanomaterial; anticancer drug; drug delivery systems
- Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pi-eros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-53. [Crossref] [PubMed]
- Goldman E, Zinger A, da Silva D, Yaari Z, Kajal A, Vardi-Oknin D, et al. Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology. 2017;28(43):43LT01. [Crossref] [PubMed]
- Xie Z, Zeng X. DNA/RNA-based formulations for treatment of breast cancer. Expert Opin Drug Deliv. 2017;14(12):1379-93. [Crossref] [PubMed]
- Rocha M, Chaves N, Báo S. Nanobiotechnology for breast cancer treatment. In: Van Pham P, ed. Breast Cancer: From Biology to Medicine. 1st ed. Croatia: IntechOpen; 2017. p.411-32. [Crossref]
- Feng B, Niu Z, Hou B, Zhou L, Li Y, Yu H. Enhancing triple negative breast cancer ımmunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles. Adv Funct Mater. 2020;30(6):1906605. [Crossref]
- Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015;12(2):106-16. [PubMed] [PMC]
- Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release. 2020;326:628-47. [Crossref] [PubMed]
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. [Crossref] [PubMed]
- Khanna V, Kalscheuer S, Kirtane A, Zhang W, Panyam J. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discov. 2019;1(1):FDD8. [Crossref] [PubMed] [PMC]
- T.C. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. Türkiye Kanser İstatistikleri, 2016. Ankara: 2019. Erişim linki: [Link]
- Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH, et al; CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012; 366(2):109-19. [Crossref] [PubMed] [PMC]
- Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687-717. [Crossref] [PubMed]
- Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275-81. [Crossref] [PubMed]
- Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(6):797-816. [Crossref] [PubMed] [PMC]
- Isakoff SJ. Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J. 2010;16(1):53-61. [Crossref] [PubMed] [PMC]
- Lu RM, Chen MS, Chang DK, Chiu CY, Lin WC, Yan SL, et al. Targeted drug delivery systems mediated by a novel Peptide in breast cancer therapy and imaging. PLoS One. 2013;8(6):e66128. [Crossref] [PubMed] [PMC]
- Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer. 2004; 4(10):806-13. [Crossref] [PubMed]
- Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19): 1441-54. [Crossref] [PubMed]
- Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-57. [Crossref] [PubMed]
- Hida K, Maishi N, Sakurai Y, Hida Y, Harashima H. Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev. 2016;99(Pt B):140-7. [Crossref] [PubMed]
- Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol. 2009;6(1):43-51. [Crossref] [PubMed] [PMC]
- Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909-15. [Crossref] [PubMed]
- Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1-16. [Crossref] [PubMed]
- LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21(10):1184-91. [Crossref] [PubMed]
- Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161-71. [Crossref] [PubMed]
- Forssen EA, Ross ME. Daunoxome® treatment of solid tumors: Preclinical and clinical investigations. J Liposome Res. 1994;4(1): 481-512. [Crossref]
- Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. [Crossref] [PubMed]
- Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145-60. [Crossref] [PubMed]
- Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185-98. [Crossref] [PubMed]
- Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(6):797-816. [Crossref] [PubMed] [PMC]
- Litzinger DC, Buiting AM, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994; 1190(1):99-107. [Crossref] [PubMed]
- Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther. 2001;298(2):607-12. [PubMed]
- Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068(2): 133-41. [Crossref] [PubMed]
- Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64-73. [Crossref] [PubMed]
- Yao J, Sun Y, Yang M, Duan Y. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem. 2012;22;14313-29. [Crossref]
- Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906-24. Erratum in: Adv Mater. 2010;22(46):5226. [Crossref] [PubMed]
- Wei Y, Zhou F, Zhang D, Chen Q, Xing D. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale. 2016;8(6): 3530-8. [Crossref] [PubMed]
- Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, et al. Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale. 2015; 7(5):1655-60. [Crossref] [PubMed]
- Kiew SF, Ho YT, Kiew LV, Kah JCY, Lee HB, Imae T, et al. Preparation and characterization of an amylase-triggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability. Int J Pharm. 2017;534(1-2):297-307. [Crossref] [PubMed]
- Siriviriyanun A, Tsai YJ, Voon SH, Kiew SF, Imae T, Kiew LV, et al. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng C Mater Biol Appl. 2018;89:307-15. [Crossref] [PubMed]
- Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv. 2009;6(3):285-304. [Crossref] [PubMed]
- Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010; 141(2):183-92. [Crossref] [PubMed]
- Kulhari H, Pooja D, Shrivastava S, V G M N, Sistla R. Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. Colloids Surf B Biointerfaces. 2014;117:166-73. [Crossref] [PubMed]
- Schultz JF, Bell JD, Goldstein RM, Kuhn JA, McCarty TM. Hepatic tumor imaging using iron oxide MRI: comparison with computed tomography, clinical impact, and cost analysis. Ann Surg Oncol. 1999;6(7):691-8. [Crossref] [PubMed]
- Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491-9. Erratum in: N Engl J Med. 2003;349(10):1010. [Crossref] [PubMed]
- Qiao W, Wang B, Wang Y, Yang L, Zhang Y, Shao P. Cancer therapy based on nanomaterials and nanocarrier systems. Journal of Nanomaterials. 2010:1-9. [Crossref]
- Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res. 2006;12(5):1606-14. [Crossref] [PubMed]
- Lee SM, Ahn RW, Chen F, Fought AJ, O'Halloran TV, Cryns VL, et al. Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy. ACS Nano. 2010;4(9):4971-8. [Crossref] [PubMed] [PMC]
- Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;35(14):4333-44. [Crossref] [PubMed]
- Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release. 2013;171(3):280-7. [Crossref] [PubMed]
- Zhou W, Zhou Y, Wu J, Liu Z, Zhao H, Liu J, et al. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J Drug Target. 2014; 22(1):57-66. [Crossref] [PubMed]
- Zhang C, Zhang X, Zhao W, Zeng C, Li W, Li B, et al. Chemotherapy drugs derived nano particles encapsulating mRNA encoding tumor suppressor proteins to treat triple-negative breast cancer. Nano Res. 2019;12(4): 855-61. [Crossref] [PubMed] [PMC]
- Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials. 2000;21(1):1-7. [Crossref] [PubMed]
- Jain RK, Stylianopoulos T. Delivering nano medicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653-64. [Crossref] [PubMed] [PMC]
- Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696-706. [Crossref] [PubMed]
- Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44(10):1123-34. [Crossref] [PubMed]
- Liang C, Yang Y, Ling Y, Huang Y, Li T, Li X. Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem. 2011;19(13):4057-66. [Crossref] [PubMed]
- Sutradhar KB, Amin L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014:1-12. [Crossref]
- Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20(9):1337-50. [Crossref] [PubMed]
- Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001; 41:189-207. [Crossref] [PubMed]
- Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1-2):271-84. [Crossref] [PubMed]
- Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284-304. [Crossref] [PubMed] [PMC]
- Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175-87. [Crossref] [PubMed]
- Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nano medicine applied to translational oncology: A future perspective on cancer treatment. Nano medicine. 2016;12(1):81-103. [Crossref] [PubMed]
- Wang Y, Santos A, Evdokiou A, Losic D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J Mater Chem B. 2015; 3(36):7153-72. [Crossref] [PubMed]
- Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6(1):23. [Crossref] [PubMed] [PMC]
- Inoue K, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. ScientificWorldJournal. 2011;11:382-90. [Crossref] [PubMed] [PMC]
- Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond). 2006;56(5):307-11. [Crossref] [PubMed]
- Baati T, Njim L, Neffati F, Kerkeni A, Bouttemi M, Gref R, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal-organic frameworks. Chem Sci. 2013;4(4):1597-607. [Crossref]
- Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103(13):4930-4. [Crossref] [PubMed]
- Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol. 2009;87(3):133-70. [Crossref] [PubMed] [PMC]
- Elena V, Gazouli M, Ploussi A, Platoni K, Efstathopoulos EP. Nanoparticles: nanotoxicity aspects. J Phys: Conf Ser. 2017;931(1):1-6. [Crossref]
- Walters C, Pool E, Somerset V. Nanotoxico-logy: a review. In: Soloneski S, Larramendy ML, et al. Toxicology: New Aspects to This Scientific Conundrum. 1st ed. Croatia: IntechOpen; 2016. p.45-64.
- Chitgupi U, Qin Y, Lovell JF. Targeted nanomaterials for phototherapy. Nanotheranostics. 2017;1(1):38-58. [Crossref] [PubMed] [PMC]
.: Process List