Amaç: Son yıllarda konvansiyonel üretimden farklı olarak daha hızlı ve düşük maliyetli üretim imkanı sunan 3 boyutlu yazıcılarda kullanılan geçici ve daimi kuron materyallerinin üretici firmanın önerisi dışında farklı polimerizasyon süresi ve yöntemi hakkında literatürde sınırlı veri ve çalışma mevcuttur. Bu çalışmada, 3 boyutlu baskılı metakrilik asit ester bazlı geçici ve daimi kuron reçinelerin farklı yöntemlerle sertleşme protokollerinin Vickers sertlik değeri üzerindeki etkisinin değerlendirilmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmada VarseoSmile Crown Plus (VSC, n=90) ve VarseoSmile Temp (VST, n=90) materyallerinden stereolitografi formatında disk şeklinde (ø: 8 mm, kalınlık: 2 mm) 3 boyutlu çıktılar (n=180) elde edilmiştir. Daha sonra diskler Otoflash, Valo Cordless ve Labolight LV-III cihazlarında üretici firma önerilerine uygun olarak polimerize edilmek üzere randomize şekilde 3 gruba ayrılmıştır. Elde edilen disklerin Vickers yüzey sertlikleri hesaplandıktan sonra tek yönlü varyans analizi ve ''post hoc'' Duncan testleri kullanılarak istatistiksel değerlendirme yapılmıştır (p<0,05). Bulgular: En yüksek yüzey sertlik değeri VSC'nin Bego-Otoflash ve Valo ışık cihazı kullanılarak polimerize edildiği gruplarda gözlenmiş olup, bu gruplar arasında istatistiksel olarak anlamlı farklılık bulunmamıştır (p>0,05). Ancak diğer grupların yüzey sertlik değerleri arasındaki farklılık istatistiksel olarak anlamlı bulunmuştur (p<0,01). Sonuç: VSC ve VST esaslı 3 boyutlu kuron materyallerinin bu reçineler kullanılarak tamir edildiğinde polimerizasyon amacıyla üretici firmanın önerdiği Otoflash cihazı yerine Valo ışık cihazının kullanılması benzer dayanıklılıkla sonuçlanacaktır.
Anahtar Kelimeler: Kuron; polimerizasyon; sağlamlık testleri
Objective: Except for the manufacturer's instructions, there are limited data and studies about different polymerization times and methods of temporary and permanent crown materials produced by 3D printers, which offer faster and less expensive production options than conventional production. The aim of this study was to evaluate the effect of different polymerization methods on the Vickers hardness value of three-dimensional printed methacrylic acid ester-based temporary and permanent crown resins. Material and Methods: In the study, threedimensional printouts (n=180) were obtained from VarseoSmile Crown Plus (VSC, n=90) and VarseoSmile Temp (VST, n=90) materials in the form of disks (ø: 8 mm, thickness: 2 mm) in standard tessellation language format. The discs were then randomly divided into 3 groups to be polymerized in Autoflash, Valo Cordless and Labolight LV-III devices in accordance with the manufacturer's instructions. After calculating the Vickers surface hardness of the obtained disks, statistical evaluation was performed using one-way analysis of variance and post-hoc Duncan tests (p<0.05). Results: The highest surface hardness value was observed in the groups where VSC was polymerized using Bego-Otoflash and Valo light device and there was no statistically significant difference between these groups (p>0.05). However, the difference between the surface hardness values of the other groups was statistically significant (p<0.01). Conclusion: Using the Valo light device instead of the manufacturer's recommended Autoflash device for polymerization of the repaired VSC and VST based three-dimensional crown materials will result in same durability values.
Keywords: Crown; polymerization; hardness tests
- Latz AM, von See C, Alevizakos V, Sandmair M, Othman A. Shear force comparative evaluation for surface treated and non- treated 3D interim printed materials with different types of glass-ionomer cements. J Clin Exp Dent. 2020;12(10):e916-e21. [Crossref] [PubMed] [PMC]
- Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179-85. [Crossref] [PubMed] [PMC]
- Schweiger J, Edelhoff D, Güth JF. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J Clin Med. 2021;10(9):2010. [Crossref] [PubMed] [PMC]
- Jain R, Supriya BS, Gupta K. Recent trends of 3-D printing in dentistry-a review. Ann Prosthodont Rest Dent. 2016;2(1):101-4. [Crossref]
- Mpofu TP, Mawere C, Mukosera M. The impact and application of 3D printing technology. 2014;6(3):2148-52. [Link]
- Graf T, Erdelt KJ, Güth JF, Edelhoff D, Schubert O, Schweiger J. Influence of pre-treatment and artificial aging on the retention of 3D-printed permanent composite crowns. Biomedicines. 2022;10(9):2186. [Crossref] [PubMed] [PMC]
- Donmez MB, Çakmak G, Yılmaz D, Schimmel M, Abou-Ayash S, Yilmaz B, et al. Bond strength of additively manufactured composite resins to dentin and titanium when bonded with dual-polymerizing resin cements. J Prosthet Dent. 2023:S0022-3913(23)00255-X. [Crossref] [PubMed]
- Al-Dulaijan YA, Alsulaimi L, Alotaibi R, Alboainain A, Alalawi H, Alshehri S, et al. Comparative Evaluation of Surface Roughness and Hardness of 3D Printed Resins. Materials (Basel). 2022;15(19):6822. [Crossref] [PubMed] [PMC]
- Zhang Y, Xu Y, Simon-Masseron A, Lalevée J. Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chemical Society Reviews. 2021;50(6):3824-3841. [Crossref] [PubMed]
- Ozkan Ata S, Akay C, Ata N. The effect of environmental pressure changes on the bond strength between zirconia ceramic and adhesive resin cement. Aircr. Eng. Aerosp. Technol. 2022;94(8):1336-43. [Crossref]
- Revilla-León M, Özcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28(2):146-58. [Crossref] [PubMed]
- Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B. Eng. 2018;143:172-96. [Crossref]
- Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent. 2021;109:103630. [Crossref] [PubMed]
- Kurachi C, Tuboy AM, Magalhães DV, Bagnato VS. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater. 2001;17(4):309-15. [Crossref] [PubMed]
- Çakmakcıoglu Ö, Topbaşı B. Farklı ışık kaynaklarının kompozit polimerizasyonuna etkisi [Effect of different curing units on composite polymerization]. J Dent Fac Ataturk Univ. 2005;2005(1):48-54. [Crossref]
- Pratap B, Gupta RK, Denis L, Goswami D. Evaluation of polymerization shrinkage and Vickers hardness for restorative dental composites. Mater. Today: Proc. 2020;21(3):1563-5. [Crossref]
- Colombo M, Poggio C, Lasagna A, Chiesa M, Scribante A. Vickers micro-hardness of new restorative cad/cam dental materials: evaluation and comparison after exposure to acidic drink. Materials (Basel). 2019;12(8):1246. [Crossref] [PubMed] [PMC]
- Gorken FN, Kuru S, Batu S, Guven Y, Sepet E. Compomers Reinforced with Bioactive Glass and Hydroxyapatite Particles. Oral Health Prev Dent. 2018;16(5):431-8. [Crossref] [PubMed]
- Poskus LT, Placido E, Cardoso PE. Influence of placement techniques on Vickers and Knoop hardness of class II composite resin restorations. Dent Mater. 2004;20(8):726-32. [Crossref] [PubMed]
- Grzebieluch W, Kowalewski P, Grygier D, Rutkowska-Gorczyca M, Kozakiewicz M, Jurczyszyn K. Printable and machinable dental restorative composites for CAD/CAM application-comparison of mechanical properties, fractographic, texture and fractal dimension analysis. Materials (Basel). 2021;14(17):4919. [Crossref] [PubMed] [PMC]
- Comba A, Scotti N, Maravić T, Mazzoni A, Carossa M, Breschi L, et al. Vickers hardness and shrinkage stress evaluation of low and high viscosity bulk-fill resin composite. Polymers (Basel). 2020;12(7):1477. [Crossref] [PubMed] [PMC]
- Ben Ghorbal G, Tricoteaux A, Thuault A, Louis G, Chicot D. Comparison of conventional Knoop and Vickers hardness of ceramic materials. J Eur Ceram Soc. 2017;37(6):2531-5. [Crossref]
- Borella PS, Alvares LAS, Ribeiro MTH, Moura GF, Soares CJ, Zancopé K, et al. Physical and mechanical properties of four 3D-printed resins at two different thick layers: An in vitro comparative study. Dent Mater. 2023;39(8):686. [Crossref] [PubMed]
- Shin DH, Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater. 2009;25(8):1030-8. [Crossref] [PubMed] [PMC]
- Fúcio SB, Carvalho FG, Sobrinho LC, Sinhoreti MA, Puppin-Rontani RM. The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthetic restorative materials--an in vitro study. J Dent. 2008;36(10):833-9. [Crossref] [PubMed]
- Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J Conserv Dent. 2012;15(3):237-41. [Crossref] [PubMed] [PMC]
- Ayaz EA, Durkan R, Koroglu A, Bagis B. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA-based denture resins. J Appl Biomater Funct Mater. 2014;12(3):228-33. [Crossref] [PubMed]
- Moharam LM, El-Hoshy AZ, Abou-Elenein K. The effect of different insertion techniques on the depth of cure and vickers surface micro-hardness of two bulk-fill resin composite materials. J Clin Exp Dent. 2017;9(2):e266-e71. [PubMed] [PMC]
- Aung SZ, Takagaki T, Ikeda M, Nozaki K, Burrow MF, Abdou A, et al. The effect of different light curing units on Vickers microhardness and degree of conversion of flowable resin composites. Dent Mater J. 2021;40(1):44-51. [Crossref] [PubMed]
- Gonulol N, Ozer S, Tunc ES. Effect of a third-generation LED LCU on microhardness of tooth-colored restorative materials. Int J Paediatr Dent. 2016;26(5):376-82. [Crossref] [PubMed]
- Yaman BC, Efes BG, Dörter C, Gömeç Y, Erdilek D, Büyükgökçesu S. The effects of halogen and light-emitting diode light curing on the depth of cure and surface microhardness of composite resins. J Conserv Dent. 2011;14(2):136-9. [Crossref] [PubMed] [PMC]
- Campregher UB, Samuel SM, Fortes CB, Medina AD, Collares FM, Ogliari FA. Effectiveness of second-generation light-emitting diode (LED) light curing units. J Contemp Dent Pract. 2007;8(2):35-42. [Crossref] [PubMed]
.: Process List