Önemli bir katekolamin nörotransmitter olan dopamin, santral sinir sisteminde ve sindirim sistemi, dalak ve pankreas gibi periferik dokularda sentez edilmektedir. Hem santral sinir sisteminde hem de periferal sistemde dopamin, çeşitli biyolojik fonksiyonları dopamin reseptörleri aracılığıyla düzenlemektedir. Santral sinir sistemindeki dopamin reseptörleri, D1-benzeri ve D2-benzeri olmak üzere 2 alt gruba ayrılmaktadır. Diğer taraftan, periferdeki dopamin reseptörleri ise DA1 ve DA2 olmak üzere 2 alt gruba ayrılmaktadır. Dopamin reseptörlerinin ekpresyon düzeyleri, farklı tümör tiplerinde ve tümör gelişiminin farklı aşamalarında farklılık göstermektedir. Nöron kültürü çalışmalarında dopamin tarafından hücre siklusunun durmasının, DNA fragmentasyonunun ve apoptozun indüklendiği gösterilmiştir. Birçok çalışmada dopaminin anjiyogenezi baskılayarak, tümör büyümesini inhibe ettiği ve bu süreci yöneten en önemli bileşenin ise DRD2 olduğu belirlenmiştir. Matriks metalloproteinazlar (MMPs), tümör invazyonu ve metastazında önemli rol oynamaktadır. Dopamin, DRD2 aracılığıyla MMP-13 ekspresyon seviyelerinin düşmesine neden olmaktadır. Dopamin ve reseptörleri birçok immün sistem hücresinde sentez edilmektedir. Dopamin, nöral sistem ile immün sistem arasındaki iletişimi sağlayan en önemli bileşenlerdendir. Ek olarak dopamin, yardımcı T hücrelerinin farklılaşmasını, polarizasyonunu, sitokin sekresyonunu ve efektör fonksiyonunu etkilemektedir. Dopamin reseptörlerinin bloke edilerek ya da aktive edilerek hedeflenmesi, kanser tedavisinde temel bir stratejidir. Dopamin reseptörlerinin ekspresyon özelliklerinin, değişen kanserli durumlarda detaylı olarak bilinmesi kanser tedavisi açısından oldukça önemlidir. Benzer şekilde, dopamin ve immün sistem arasındaki etkileşimlerin daha iyi anlaşılması, kanser tedavisi için önem arz etmektedir. Bu derlemede, dopamin ve dopamin reseptörlerinin kanser hücre ölümü, anjiyogenez, invazyon ve metastaz ile ilişkisi açıklanmaya çalışılmıştır. Ek olarak, dopamin ve dopamin reseptörleri ile immün sistem arasındaki ilişki açıklanmıştır.
Anahtar Kelimeler: Dopamin; apoptoz; dopamin reseptörü; tümör hücresi; immün sistem; invazyon; metastaz
Dopamine, a significant catecholamine neurotransmitter, is synthesized in the central nervous system and peripheral tissues such as the digestive system, spleen and pancreas. Dopamine both in the central nervous system and in the peripheral system modulate several biological functions via dopamine receptors. Dopamine receptors in the central nervous system are divided into two subtypes: D1-like and D2-like. On the other hand, peripheral dopamine receptors are divided into two subtypes: DA1 ve DA2. The expression levels of dopamine receptors vary across different types of tumor and at different stages of tumor progression. In studies conducted with neuron culture, cell cycle arrest, DNA fragmentation and apoptosis have been shown to be induced by dopamine. In many studies, it has been determined that dopamine inhibits tumor growth by suppressing angiogenesis and DRD2 is the most significant component governing this process. Matrix metalloproteinases (MMPs) play an important role in tumor invasion and metastasis. Dopamine downregulates MMP-13 levels via DRD2. Dopamine and the receptors are generated in several immune cells. Dopamine is one of the most important components of the interaction between neural system and immune system. Furthermore, dopamine modulates the differentiation, polarization, cytokine secretion and effector function of T helper cells. Targeting dopamine receptors by blocking or activating is a fundamental strategy in cancer treatment. It is significant to know the expression profiles of dopamine receptors in changing cancer conditions for cancer treatment in detail. Similarly, a better understanding of the interactions between dopamine and the ımmune system has the importance for cancer treatment. In this review, the relationship between dopamine and dopamine receptors and cancer cell death, angiogenesis, invasion and metastasis has been tried to clarify. Furthermore, the association between dopamine, dopamine receptors and the immune system has been elucidated.
Keywords: Dopamine; apoptosis; dopamine receptor; tumor cell; immune system; invasion; metastasis
- Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217.[Crossref] [PubMed]
- Anden NE, Carlsson A, Dahlstroem A, Fuxe K, Hillarp NA, Larsson K. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci (1962). 1964;3:523-30.[Crossref] [PubMed]
- Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci. 2007;30(5):188-93.[Crossref] [PubMed]
- Ehringer H, Hornykiewicz O. [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]. Klin Wochenschr. 1960;15;38:1236-9.[Crossref] [PubMed]
- Beaulieu JM, Espinoza S, Gainetdinov RR. Dopamine receptors - IUPHAR Review 13. Br J Pharmacol. 2015;172(1):1-23.[Crossref] [PubMed] [PMC]
- Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125-32.[Crossref] [PubMed]
- Jose PA, Raymond JR, Bates MD, Aperia A, Felder RA, Carey RM, et al. The renal dopamine receptors. J Am Soc Nephrol. 1992;2(8):1265-78.[PubMed]
- Goldberg LI, Rajfer SI. Dopamine receptors: applications in clinical cardiology. Circulation. 1985;72(2):245-8.[Crossref] [PubMed]
- Spano PF, Govoni S, Trabucchi M. Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharmacol. 1978;19:155-65.[PubMed]
- Wang X, Wang ZB, Luo C, Mao XY, Li X, Yin JY, et al. The prospective value of dopamine receptors on bio-behavior of tumor. J Cancer. 2019;3;10(7):1622-32.[Crossref] [PubMed] [PMC]
- Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69(8):776-86.[Crossref] [PubMed] [PMC]
- Ji J, Sundquist K, Ning Y, Kendler KS, Sundquist J, Chen X, et al. Incidence of cancer in patients with schizophrenia and their first-degree relatives: a population-based study in Sweden. Schizophr Bull. 2013;39(3):527-36.[Crossref] [PubMed] [PMC]
- Wu Chou AI, Wang YC, Lin CL, Kao CH. Female schizophrenia patients and risk of breast cancer: a population-based cohort study. Schizophr Res. 2017;188:165-71.[Crossref] [PubMed]
- Arrillaga-Romany I, Chi AS, Allen JE, Oster W, Wen PY, Batchelor TT, et al. A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget. 2017;12;8(45):79298-304.[Crossref] [PubMed] [PMC]
- Driver JA, Logroscino G, Buring JE, Gaziano JM, Kurth T. A prospective cohort study of cancer incidence following the diagnosis of Parkinson's disease. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1260-5.[Crossref] [PubMed]
- Kim J, Oh JH, Harlem H, Culler MD, Ku CR, Lee EJ, et al. Therapeutic effect of a novel chimeric molecule targeting both somatostatin and dopamine receptors on growth hormone-secreting pituitary adenomas. Endocrinol Metab (Seoul). 2020;35(1):177-87.[Crossref] [PubMed] [PMC]
- Porat S, Premkumar A, Simantov R. Dopamine induces phenotypic differentiation or apoptosis in a dose-dependent fashion: involvement of the dopamine transporter and p53. Dev Neurosci. 2001;23(6):432-40.[Crossref] [PubMed]
- He Q, Yuan LB. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells. Chin Med J (Engl). 2007;5;120(11):970-4.[Crossref] [PubMed]
- Chen J, Wersinger C, Sidhu A. Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem. 2003;25;278(30):28089-100.[Crossref] [PubMed]
- Wang S, Mou Z, Ma Y, Li J, Li J, Ji X, et al. Dopamine enhances the response of sunitinib in the treatment of drug-resistant breast cancer: involvement of eradicating cancer stem-like cells. Biochem Pharmacol. 2015;15;95(2):98-109.[Crossref] [PubMed]
- Gao J, Gao F. Dopamine D1 receptors induce apoptosis of osteosarcoma cells via changes of MAPK pathway. Clin Exp Pharmacol Physiol. 2017;44(11):1166-8.[Crossref] [PubMed]
- Akiyama S, Shiraishi N, Kuratomi Y, Nakagawa M, Kuwano M. Circumvention of multiple-drug resistance in human cancer cells by thioridazine, trifluoperazine, and chlorpromazine. J Natl Cancer Inst. 1986;76(5):839-44.[PubMed]
- Shin JH, Park SJ, Kim ES, Jo YK, Hong J, Cho DH, et al. Sertindole, a potent antagonist at dopamine D2 receptors, induces autophagy by increasing reactive oxygen species in SH-SY5Y neuroblastoma cells. Biol Pharm Bull. 2012;35(7):1069-75.[Crossref] [PubMed]
- Chen J, Zhang L, Zhou H, Wang W, Luo Y, Yang H, et al. Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through Atg5 and Beclin 1 in A549 human lung cancer cells. Mol Med Rep. 2018;17(5):6859-65.[Crossref] [PubMed]
- Wang Z, Liu Z, Wu S. Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget. 2017;9;8(19):31465-77.[Crossref] [PubMed] [PMC]
- Teunis MA, Kavelaars A, Voest E, Bakker JM, Ellenbroek BA, Cools AR, et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J. 2002;16(11):1465-7.[Crossref] [PubMed]
- Jiang SH, Hu LP, Wang X, Li J, Zhang ZG. Neurotransmitters: emerging targets in cancer. Oncogene. 2020;39(3):503-15.[Crossref] [PubMed]
- Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S, et al. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287(4):H1554-60.[Crossref] [PubMed]
- Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S, et al. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res. 2004;1;10(13):4349-56.[Crossref] [PubMed]
- Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res. 2008;15;14(8):2502-10.[Crossref] [PubMed]
- Osinga TE, Links TP, Dullaart RPF, Pacak K, van der Horst-Schrivers ANA, Kerstens MN, et al. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma. FASEB J. 2017;31(6):2226-40.[Crossref] [PubMed] [PMC]
- Sarkar C, Chakroborty D, Dasgupta PS, Basu S. Dopamine is a safe antiangiogenic drug which can also prevent 5-fluorouracil induced neutropenia. Int J Cancer. 2015;1;137(3):744-9.[Crossref] [PubMed] [PMC]
- An JJ, Cho SR, Jeong DW, Park KW, Ahn YS, Baik JH, et al. Anti-proliferative effects and cell death mediated by two isoforms of dopamine D2 receptors in pituitary tumor cells. Mol Cell Endocrinol. 2003;29;206(1-2):49-62.[Crossref] [PubMed]
- Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S. Catecholamines regulate tumor angiogenesis. Cancer Res. 2009;1;69(9):3727-30.[Crossref] [PubMed]
- Hoeppner LH, Wang Y, Sharma A, Javeed N, Van Keulen VP, Wang E, et al. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol Oncol. 2015;9(1):270-81.[Crossref] [PubMed] [PMC]
- Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med. 2001;7(5):569-74.[Crossref] [PubMed]
- Cherubini E, Di Napoli A, Noto A, Osman GA, Esposito MC, Mariotta S, et al. Genetic and functional analysis of polymorphisms in the human dopamine receptor and transporter genes in small cell lung cancer. J Cell Physiol. 2016;231(2):345-56.[Crossref] [PubMed]
- Jandaghi P, Najafabadi HS, Bauer AS, Papadakis AI, Fassan M, Hall A, et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology. 2016;151(6):1218-31.[Crossref] [PubMed]
- Yong M, Yu T, Tian S, Liu S, Xu J, Hu J, et al. DR2 blocker thioridazine: a promising drug for ovarian cancer therapy. Oncol Lett. 2017;14(6):8171-7.[Crossref] [PubMed] [PMC]
- Shen J, Ma B, Zhang X, Sun X, Han J, Wang Y, et al. Thioridazine has potent antitumor effects on lung cancer stem-like cells. Oncol Lett. 2017;13(3):1563-8.[Crossref] [PubMed] [PMC]
- Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med. 2001;7(5):569-74.[Crossref] [PubMed]
- Asada M, Ebihara S, Numachi Y, Okazaki T, Yamanda S, Ikeda K, et al. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int J Cancer. 2008;1;123(3):511-8.[Crossref] [PubMed]
- Huang H, Wu K, Ma J, Du Y, Cao C, Nie Y, et al. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int Immunopharmacol. 2016;39:113-20.[Crossref] [PubMed]
- Lu M, Li J, Luo Z, Zhang S, Xue S, Wang K, et al. Roles of dopamine receptors and their antagonist thioridazine in hepatoma metastasis. Onco Targets Ther. 2015;22;8:1543-52.[Crossref] [PubMed] [PMC]
- Li H, Jia Y, Peng H, Li J. Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interface Sci. 2018;252:1-20.[Crossref] [PubMed]
- Pulkoski-Gross A, Li J, Zheng C, Li Y, Ouyang N, Rigas B, et al. Repurposing the antipsychotic trifluoperazine as an antimetastasis agent. Mol Pharmacol. 2015;87(3):501-12.[Crossref] [PubMed] [PMC]
- Kline CLB, Ralff MD, Lulla AR, Wagner JM, Abbosh PH, Dicker DT, et al. Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia. 2018;20(1):80-91.[Crossref] [PubMed] [PMC]
- Wu XY, Zhang CX, Deng LC, Xiao J, Yuan X, Zhang B, et al. Overexpressed D2 dopamine receptor inhibits non-small cell lung cancer progression through inhibiting NF-κB signaling pathway. Cell Physiol Biochem. 2018;48(6):2258-72.[Crossref] [PubMed]
- Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the dopamine D2 receptor: a pharmacological perspective. J Pharmacol Exp Ther. 2019;370(1):111-26.[Crossref] [PubMed] [PMC]
- Avsar O, Kuskucu A, Sancak S, Genc E. Are dopaminergic genotypes risk factors for eating behavior and obesity in adults? Neurosci Lett. 2017;27;654:28-32.[Crossref] [PubMed]
- Avsar O, Kuskucu A, Sancak S, Genc E. Do vesicular monoamine transporter 2 genotypes relate to obesity and eating behavior? Neuropsychiatry. 2017;7(6):1020-5.[Crossref]
- Zhang X, Liu Q, Liao Q, Zhao Y. Potential roles of peripheral dopamine in tumor immunity. J Cancer. 2017;25;8(15):2966-73.[Crossref] [PubMed] [PMC]
- Sarkar C, Chakroborty D, Basu S. Neurotransmitters as regulators of tumor angiogenesis and immunity: the role of catecholamines. J Neuroimmune Pharmacol. 2013;8(1):7-14.[Crossref] [PubMed] [PMC]
- Peters MA, Walenkamp AM, Kema IP, Meijer C, de Vries EG, Oosting SF, et al. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat. 2014;17(4-6):96-104.[Crossref] [PubMed]
- Basu S, Dasgupta PS. Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol. 2000;24;102(2):113-24.[Crossref] [PubMed]
- Pacheco R, Contreras F, Zouali M. The dopaminergic system in autoimmune diseases. Front Immunol. 2014;21;5:117.[Crossref] [PubMed] [PMC]
- Redelman D, Welniak LA, Taub D, Murphy WJ. Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol. 2008;252(1-2):111-21.[Crossref] [PubMed] [PMC]
- Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, et al. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J Immunol. 2014;15;193(6):2792-800.[Crossref] [PubMed]
- Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z, Katou F, et al. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol. 2006;15;176(2):848-56.[Crossref] [PubMed]
- Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S, et al. Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol. 2009;21(6):645-54.[Crossref] [PubMed]
- Wu J, Zhang R, Tang N, Gong Z, Zhou J, Chen Y, et al. Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. J Leukoc Biol. 2015;97(1):191-200.[Crossref] [PubMed] [PMC]
- Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res. 2015;128:95-139.[Crossref] [PubMed] [PMC]
- Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, et al. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J Immunol. 2014;15;193(6):2792-800.[Crossref] [PubMed]
- Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, et al. NK cells control tumor-promoting function of neutrophils in mice. Cancer Immunol Res. 2018;6(3):348-57.[Crossref] [PubMed]
.: Process List