Son yıllardaki metagenomik çalışmalar, adli vaka çözümlerinde etkili olabilen mikrobiyal genetik araştırmaları, adli bilimlerin kullanımına sunmaktadır. Bu çalışmalar içerisinde, insanların vücut alanını paylaşan kommensal, simbiyotik ve patojenik mikroorganizmaların ekolojik topluluğu olarak belirtilen mikrobiyomların DNA araştırmaları büyük bir yer tutmaktadır. Adli soruşturmalarda tükürük, bulunabilirlik kolaylığı ve noninvaziv olması nedeniyle tüm vücut sıvıları arasında sıklıkla tercih edilir. DNA teknolojisindeki ilerlemeler, şüphesiz ki insan DNA'sının, ısırık izlerinden ve dudak izlerinden elde edilen tükürük lekelerinden bile izolasyonunu sağlamaktadır. Fakat toplanan örneklerin degrade olması veya az miktarda DNA bulunması gibi sebeplerle her zaman kalitesi uygun bir tükürük DNA'sı elde edilemeyebilir. Oysa tükürüğün adli araştırmalarında, tükürük salgısındaki mikrobiyomların (bakteriler, mantarlar, arkeler, mikrobiyal ökaryotlar ve virüsler) analizinden elde edilen bilgiler, olayın failini suçla ilişkilendirebilir. Nitekim insan DNA'sı, şüphelinin gündelik temasından tespit edilemese de mikrobiyom profili tespit edilebilir ve bu da şüphelinin spesifik mikrobiyom profili aracılığıyla tanımlanması olasılığını artırır. Ayrıca şüphelinin yaşam tarzı, birlikte yaşadığı kişiler ve tıbbi durum bilgileri, adli soruşturmalara yardımcı olabilir. Mikrobiyom verilerinin, adli amaçlı kanıt olarak kullanımı ve rutin prosedür hâline gelebilmesi için insan mikrobiyom araştırmalarının adli bakış açısı ile ele alınması gerekir. Bu yazıda, adli alandaki yeni tükürük mikrobiyomu araştırmalarının mevcut durumu, geliştirilen analiz metotları, değerlendirmelerde kullanılan biyoinformatik çözümler ve oral mikrobiyotanın, adli bilimlerde kullanımındaki olası sınırlandırmalar ve uygulamadaki zorluklar hakkında bilgi paylaşımı amaçlanmıştır.
Anahtar Kelimeler: Adli mikrobiyom; tükürük mikrobiyomu; metagenomik analiz; biyoinformatik
Metagenomic studies in recent years offer microbial genetic studies that can be effective in forensic case solutions to the use of forensic sciences. Among these studies, DNA research of microbiomes, which is defined as an ecological community of commensal, symbiotic and pathogenic microorganisms that share human body space, has a great place. In forensic investigations, saliva is often preferred among all body fluids due to its ease of availability and non-invasiveness. Advances in DNA technology enable the isolation of human DNA, even from saliva stains obtained from bite and lip prints. However, it is not always possible to obtain a salivary DNA of appropriate quality due to the degradability of the samples or the small DNA amount. Whereas, in saliva forensic studies, information obtained from the analysis of salivary microbiomes (bacteria, fungi, archaea, microbial eukaryotes, and viruses) may associate the perpetrator with crime. Indeed, although human DNA cannot be detected from daily contact with the suspect, the microbiome profile can be detected, increasing the likelihood that the suspect will be identified through the specific microbiome profile. Also, information such as the suspect's lifestyle, cohabitants, and medical condition can assist with forensic investigations. In order for microbiome data to be used as forensic evidence and become a routine procedure, human microbiome studies should be handled with a forensic perspective. In this article, it is aimed to share information about the current status of new salivary microbiome research in the forensic field, developed analysis methods, bioinformatics solutions used in evaluations, possible limitations in the use of oral microbiota in forensic sciences and difficulties in application.
Keywords: Forensic microbiome; salivary microbiome; metagenomic analysis; bioinformatic
- Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105(46): 17994-9. [Crossref] [PubMed] [PMC]
- Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A. 2010;107(14):6477-81. [Crossref] [PubMed] [PMC]
- Tozzo P, D'Angiolella G, Brun P, Castagliuolo I, Gino S, Caenazzo L. Skin microbiome analysis for forensic human identification: what do we know so far? Microorganisms. 2020;8(6):873. [Crossref] [PubMed] [PMC]
- Karadayı B, Karadayı Ş, Sezgin N. Biyolojik delillerin tespitinde kullanılan tarama ve doğrulama testleri ve bu konudaki son gelişmeler [Presumptive and confirmatory tests used in identification of biological evidence and the latest developments in this topic]. Turkiye Klinikleri J Foren Sci Leg Med. 2018;15(2):80-92. [Crossref]
- Leake SL, Pagni M, Falquet L, Taroni F, Greub G. The salivary microbiome for differentiating individuals: proof of principle. Microbes Infect. 2016;18(6):399-405. [Crossref] [PubMed]
- Amankwaa AO. Forensic DNA retention: Public perspective studies in the United Kingdom and around the world. Sci Justice. 2018;58(6): 455-64. [Crossref] [PubMed]
- Leake SL. Is human DNA enough?-potential for bacterial DNA. Front Genet. 2013;4:282. [Crossref] [PubMed] [PMC]
- Kapoor P, Chowdhry A. Salivary signature in forensic profiling: A scoping review. J Forensic Dent Sci. 2018;10(3):123-7. [PubMed] [PMC]
- Takayasu L, Suda W, Takanashi K, Iioka E, Kurokawa R, Shindo C, et al. Circadian oscillations of microbial and functional composition in the human salivary microbiome. DNA Res. 2017;24(3):261-70. [Crossref] [PubMed] [PMC]
- Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res. 2009;19(4):636-43. [Crossref] [PubMed] [PMC]
- Karadayı S, Arasoglu T, Akmayan İ, Karadayı B. Assessment of the exclusion potential of suspects by using microbial signature in sexual assault cases: A scenario-based experimental study. Forensic Sci Int. 2021;325: 110886. [Crossref] [PubMed]
- Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80-7. [Crossref] [PubMed]
- D'Angiolella G, Tozzo P, Gino S, Caenazzo L. Trick or treating in forensics-the challenge of the saliva microbiome: a narrative review. Microorganisms. 2020;8(10):1501. [Crossref] [PubMed] [PMC]
- Xu X, He J, Xue J, Wang Y, Li K, Zhang K, et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol. 2015;17(3):699-710. [Crossref] [PubMed]
- Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K, Shibata Y, et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci Rep. 2016;6:22164. [Crossref] [PubMed] [PMC]
- Belstrøm D, Holmstrup P, Nielsen CH, Kirkby N, Twetman S, Heitmann BL, et al. Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J Oral Microbiol. 2014;6. [Crossref] [PubMed] [PMC]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402): 207-14. [Crossref] [PubMed] [PMC]
- Zaura E, Brandt BW, Prodan A, Teixeira de Mattos MJ, Imangaliyev S, Kool J, et al. On the ecosystemic network of saliva in healthy young adults. ISME J. 2017;11(5):1218-31. [Crossref] [PubMed] [PMC]
- Renson A, Jones HE, Beghini F, Segata N, Zolnik CP, Usyk M, et al. Sociodemographic variation in the oral microbiome. Ann Epidemiol. 2019;35:73-80.e2. [Crossref] [PubMed] [PMC]
- Buchwald S, Kocher T, Biffar R, Harb A, Holtfreter B, Meisel P. Tooth loss and periodontitis by socio-economic status and inflammation in a longitudinal population-based study. J Clin Periodontol. 2013;40(3):203-11. [Crossref] [PubMed]
- Sabbah W, Folayan MO, El Tantawi M. The link between oral and general health. Int J Dent. 2019;2019:7862923. [Crossref] [PubMed] [PMC]
- Dzidic M, Collado MC, Abrahamsson T, Artacho A, Stensson M, Jenmalm MC, et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 2018;12(9):2292-306. [Crossref] [PubMed] [PMC]
- Mishiro T, Oka K, Kuroki Y, Takahashi M, Tatsumi K, Saitoh T, et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J Gastroenterol Hepatol. 2018;33(5): 1059-66. [Crossref] [PubMed]
- Balan P, Chong YS, Umashankar S, Swarup S, Loke WM, Lopez V, et al. Keystone species in pregnancy gingivitis: a snapshot of oral microbiome during pregnancy and postpartum period. Front Microbiol. 2018;9:2360. [Crossref] [PubMed] [PMC]
- Nowicki EM, Shroff R, Singleton JA, Renaud DE, Wallace D, Drury J, et al. Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio. 2018;9(2): e00 575-18. [Crossref] [PubMed] [PMC]
- Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5): 1016-25. [Crossref] [PubMed] [PMC]
- Xiao J, Grier A, Faustoferri RC, Alzoubi S, Gill AL, Feng C, et al. Association between oral candida and bacteriome in children with severe ECC. J Dent Res. 2018;97(13):1468-76. [Crossref] [PubMed] [PMC]
- Dabdoub SM, Fellows ML, Paropkari AD, Mason MR, Huja SS, Tsigarida AA, et al. PhyloToAST: Bioinformatics tools for species-level analysis and visualization of complex microbial datasets. Sci Rep. 2016;6:29123. [Crossref] [PubMed] [PMC]
- Schincaglia GP, Hong BY, Rosania A, Barasz J, Thompson A, Sobue T, et al. Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J Dent Res. 2017; 96(1):47-55. [Crossref] [PubMed]
- van der Meulen TA, Harmsen HJM, Bootsma H, Liefers SC, Vich Vila A, Zhernakova A, et al. Reduced salivary secretion contributes more to changes in the oral microbiome of patients with primary Sjögren's syndrome than underlying disease. Ann Rheum Dis. 2018; 77(10):1542-4. [Crossref] [PubMed]
- Mashima I, Theodorea CF, Thaweboon B, Thaweboon S, Scannapieco FA, Nakazawa F. Exploring the salivary microbiome of children stratified by the oral hygiene index. PLoS One. 2017;12(9):e0185274. [Crossref] [PubMed] [PMC]
- Zheng X, He J, Wang L, Zhou S, Peng X, Huang S, et al. Ecological effect of arginine on oral microbiota. Sci Rep. 2017;7(1):7206. [Crossref] [PubMed] [PMC]
- Koopman JE, Hoogenkamp MA, Buijs MJ, Brandt BW, Keijser BJ, Crielaard W, et al. Changes in the oral ecosystem induced by the use of 8% arginine toothpaste. Arch Oral Biol. 2017;73:79-87. [Crossref] [PubMed]
- Joshi V, Matthews C, Aspiras M, de Jager M, Ward M, Kumar P. Smoking decreases structural and functional resilience in the subgingival ecosystem. J Clin Periodontol. 2014; 41(11): 1037-47. [Crossref] [PubMed]
- Kumar PS, Matthews CR, Joshi V, de Jager M, Aspiras M. Tobacco smoking affects bacterial acquisition and colonization in oral biofilms. Infect Immun. 2011;79(11):4730-8. [Crossref] [PubMed] [PMC]
- Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016;10(10):2435-46. [Crossref] [PubMed] [PMC]
- Fan X, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Freedman ND, et al. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome. 2018;6(1):59. [Crossref] [PubMed] [PMC]
- Hernandez BY, Zhu X, Goodman MT, Gatewood R, Mendiola P, Quinata K, et al. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS One. 2017;12(2): e0172196. [Crossref] [PubMed] [PMC]
- Al-Maweri SA, Warnakulasuriya S, Samran A. Khat (Catha edulis) and its oral health effects: An updated review. J Investig Clin Dent. 2018;9(1). [Crossref] [PubMed]
- Al Moaleem MM, Porwal A, Al Ahmari NM, Shariff M, Homeida H, Khalid A. Khat chewing ınduces a floral shift in dental material-associated microbiota: a preliminary study. Med Sci Monit. 2020;26:e918219. [Crossref] [PubMed] [PMC]
- Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al; LifeLines cohort study, Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565-9. [Crossref] [PubMed] [PMC]
- Lassalle F, Spagnoletti M, Fumagalli M, Shaw L, Dyble M, Walker C, et al. Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts in commensal balance and pathogen load linked to diet. Mol Ecol. 2018;27(1):182-95. [Crossref] [PubMed]
- Holgerson PL, Vestman NR, Claesson R, Ohman C, Domellöf M, Tanner AC, et al. Oral microbial profile discriminates breast-fed from formula-fed infants. J Pediatr Gastroenterol Nutr. 2013;56(2):127-36. [Crossref] [PubMed] [PMC]
- Li J, Quinque D, Horz HP, Li M, Rzhetskaya M, Raff JA, et al. Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa. BMC Microbiol. 2014;14:316. [Crossref] [PubMed] [PMC]
- Skarke C, Lahens NF, Rhoades SD, Campbell A, Bittinger K, Bailey A, et al. A pilot characterization of the human chronobiome. Sci Rep. 2017;7(1):17141. [Crossref] [PubMed] [PMC]
- Sato Y, Yamagishi J, Yamashita R, Shinozaki N, Ye B, Yamada T, et al. Inter-individual differences in the oral bacteriome are greater than intra-day fluctuations in individuals. PLoS One. 2015;10(6):e0131607. [Crossref] [PubMed] [PMC]
- Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87(11): 1016-20. [Crossref] [PubMed]
- Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osterås M, et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods. 2009;79(3):266-71. [Crossref] [PubMed] [PMC]
- Lazarevic V, Whiteson K, Hernandez D, François P, Schrenzel J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics. 2010;11:523. [Crossref] [PubMed] [PMC]
- Çevik FE, Çakan H. Adli mikrobiyal genetik. Gündoğmuş ÜN, editör. Adli Mikrobiyoloji. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. p.32-8. [Link]
- Kim M, Morrison M, Yu Z. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods. 2011;84(1):81-7. [Crossref] [PubMed]
- Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2004;70(8): 4800-6. [Crossref] [PubMed] [PMC]
- Kumar PS, Brooker MR, Dowd SE, Camerlengo T. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One. 2011;6(6):e20956. [Crossref] [PubMed] [PMC]
- Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4516-22. [Crossref] [PubMed] [PMC]
- Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112-20. [Crossref] [PubMed] [PMC]
- Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, Sogin ML. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008;4(11):e1000255. Erratum in: PLoS Genet. 2008;4(12). Welch, David Mark [corrected to Mark Welch, David]. [Crossref] [PubMed] [PMC]
- Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-7. Erratum in: Nat Biotechnol. 2019;37(9):1091. [PubMed] [PMC]
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-41. [Crossref] [PubMed] [PMC]
- Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57-9. [Crossref] [PubMed] [PMC]
- von Wintzingerode F, Göbel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997; 21(3):213-29. [Crossref] [PubMed]
- Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44(4):846-9. [Link]
- Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ. 2014;2:e545. [Crossref] [PubMed] [PMC]
- Westcott SL, Schloss PD. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ. 2015;3:e1487. [Crossref] [PubMed] [PMC]
- Karstens L, Asquith M, Davin S, Fair D, Gregory WT, Wolfe AJ, et al. Controlling for contaminants in low biomass 16S rRNA gene sequencing experiments. bioRxiv. 2018. [Crossref]
- Borcard D, Gillet F, Legendre P. Community diversity. Numerical Ecology with R. 2nd ed. Switzerland: Springer International Publishing; 2018. p.369-412. [Crossref]
- Xia Y, Sun J, Chen D. Introductory overview of statistical analysis of microbiome data. Statistical Analysis of Microbiome Data with R. 1st ed. Singapore: Springer Singapore; 2018. p.43-75. [Crossref]
- Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566-70. [Crossref] [PubMed] [PMC]
- Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, et al. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015; 112(22):E2930-8. [Crossref] [PubMed] [PMC]
- Clarke TH, Gomez A, Singh H, Nelson KE, Brinkac LM. Integrating the microbiome as a resource in the forensics toolkit. Forensic Sci Int Genet. 2017;30:141-7. [Crossref] [PubMed]
- Stahringer SS, Clemente JC, Corley RP, Hewitt J, Knights D, Walters WA, et al. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res. 2012;22(11):2146-52. [Crossref] [PubMed] [PMC]
- Wang S, Song F, Wang Y, Huang Y, Xie B, Luo H. High resolution melting analysis (HRM) based on 16SrRNA as a tool for personal identification with the human oral microbiome. Forensic Science International: Genetics Supplement Series. 2019;7(1):161-3. [Crossref]
- Sundström K, Mishra PP, Pyysalo MJ, Lehtimäki T, Karhunen PJ, Pessi T. Similarity of salivary microbiome in parents and adult children. PeerJ. 2020;8:e8799. [Crossref] [PubMed] [PMC]
- Rasiah IA, Wong L, Anderson SA, Sissons CH. Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosms. Arch Oral Biol. 2005;50(9):779-87. [Crossref] [PubMed]
- Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960): 1694-7. [Crossref] [PubMed] [PMC]
- Yooseph S, Andrews-Pfannkoch C, Tenney A, McQuaid J, Williamson S, Thiagarajan M, et al. A metagenomic framework for the study of airborne microbial communities. PLoS One. 2013;8(12):e81862. [Crossref] [PubMed] [PMC]
.: Process List