Karaciğer organizmanın temel metabolik işlevlerinin gerçekleştiği organdır. Birçok kimyasal maddenin hepatotoksik olduğu bilinmektedir. Bir kimyasal maddenin in vivo olarak karaciğer hasarı yapabilme kapasitesi; bu maddenin alımı, biyotransformasyonu ve eliminasyonu sırasında geçirdiği bir seri kompleks hücresel prosese bağlıdır. Ayrıca, karaciğer hasarı yapan pek çok kimyasal madde için hayvan modellerinden elde edilen bilgilerin insana tam olarak ekstrapole edilmesi bazı durumlarda uygun değildir. Bu durumda, in vitro karaciğer sistemlerinin potansiyel hepatotoksik bileşiklerin belirlenmesi ve bunların yarattığı hepatotoksisitenin altında yatan mekanizma veya mekanizmaların araştırılması açısından daha iyi bir deneysel yaklaşımı sağladığı belirtilmektedir. En sık kullanılan in vitro karaciğer modelleri arasında; izole perfüze organ parçaları, karaciğer dilimleri, subselüler fraksiyonlar ve izole ve kültür hepatositler gelmektedir. Son 20-30 yıldır insan veya hayvanlardan elde edilen diferansiye hepatositlerin ve karaciğer dilimlerinin hazırlanma ve kültürlenmeleriyle ilgili çok büyük gelişmeler sağlanmıştır. Ayrıca, izole hepatositlerin ilaç metabolizması ve toksisite çalışmalarında sağlayabilecekleri yararlar hakkında önemli araştırmalar yapılmıştır. Ancak, başta ilaç geliştirme çalışmaları olmak üzere, in vitro çalışmalar in vivo çalışmalara henüz tam bir alternatif değildir. Ayrıca, kültür hepatositlerinde gözlenen erken fenotipik değişiklikler, düşük proliferasyon kapasiteleri ve insan hepatositlerinin bulunma zorlukları gibi bazı sınırlamalar bulunmaktadır. Gelecekte bu çalışmalardan beklenen en büyük gelişme kültür koşullarının iyileştirilerek in vivo koşulları daha iyi taklit edebilmesi ve bu koşullarla daha büyük korelasyon oluşturmasıdır. Bu çalışma kapsamında, toksikolojide kullanılan in vitro karaciğer modellerinden söz edilerek, her modelin kullanım koşulları, avantaj ve dezavantajlarının anlatılması amaçlanmıştır.
Anahtar Kelimeler: İn vitro teknikler; karaciğer; hepatositler; hücresel yapılar
Liver is the organ where the basic metabolic functions of the organism is actualized. Several chemicals are known to be hepatotoxic. The capacity of a chemical to cause liver damage depends on a series of complex biological processes during its uptake, biotransformation and elimination. In addition, for several liver damaging chemicals, the extrapolation of information obtained from animal models to humans is not appropriate in some situations. Under these circumstances, in vitro liver systems provide a better experimental approach for determining the hepatotoxic substances and their mechanism/s of hepatotoxicity. The most widely used in vitro liver models are isolated perfused organ parts, liver slices, subcellular fractions and isolated and cultured hepatocytes. In the last twenty and thirty years, the preparation and culturing of the differentiated hepatocytes and liver slices obtained from animals and humans have intensively developed. Moreover, important research on the advantages of the use of isolated hepatocytes in drug metabolism and toxicity studies have been performed. However, in vitro studies are not still an alternative to in vivo studies, particularly in the field of drug development. In addition, the phenotypic changes observed in cultured hepatocytes, their proliferation capacity and the difficulty in finding human hepatocytes are still the limitations. In the future, the highly expected development is the recruitment of culture conditions for these models to highly mimic in vitro conditions and provide high correlations. In this review, I will mainly focus on in vitro liver models used in toxicology, their utilixation, advantages and disadvantages.
Keywords: In vitro techniques; liver; hepatocytes; cellular structures
- Holme JA, Dybing E. The use of in vitro methods for hazard characterisation of chemicals. Toxicol Lett. 2002;127(1-3):135-41. [Crossref]
- Liebsch M, Spielmann H. Currently available in vitro methods used in the regulatory toxicology. Toxicol Lett. 2002;127(1-3):127-34. [Crossref]
- Eagle H, Foley GE. The cytotoxic action of carcinolytic agents in tissue culture. Am J Med. 1956;21(5):739-49. [Crossref]
- National Toxicology Program (NTP). Report of the International Workshop on In Vitro Methods for Assessing Acute Systemic Toxicity. NTP; 2001. p.137.
- Buchwald M. Use of cultured human cells for biochemical analysis. Clin Biochem. 1984; 17(3):143-50. [Crossref]
- Erkekoglu P, Elnour A, Kocer-Gumusel B, Bhagavathula A, Shehab A. Cellular and molecular aspects of drug-induced liver toxicity: recent prominent mechanisms. MOJ Toxicol. 2015;1(5):156-61. [Crossref]
- Guillouzo A. Liver cell models in in vitro toxicology. Environ Health Perspect. 1998;106 Suppl 2:511-32. [Crossref] [PubMed] [PMC]
- Kandárová H, Leta?iová S. Alternative methods in toxicology: pre-validated and validated methods. Interdiscip Toxicol. 2011;4(3):107-13 [Crossref] [PubMed] [PMC]
- Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobio tics. Chem Biol Interact. 2007;168(1):66-73. [Crossref] [PubMed]
- Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci. 2002;65(2):166-76. [Crossref] [PubMed]
- Bessems M, ?t Hart NA, Tolba R, Doorschodt BM, Leuvenink HG, Ploeg RJ, et al. The isolated perfused rat liver: standardization of a time-honoured model. Lab Anim. 2006;40(3):236-46. [Crossref] [PubMed]
- Brouwer KL, Thurman RG. Isolated perfused liver. Pharm Biotechnol. 1996;8:161-92. [Crossref]
- Soldatow VY, Lecluyse EL, Griffith LG, Rusyn In vitro models for liver toxicity testing. Toxicol Res (Camb). 2013;2(1):23-39. [Crossref] [PubMed] [PMC]
- Ferrero JL, Brendel K. Liver slices as a model in drug metabolism. Adv Pharmacol. 1997;43:131-69. [Crossref]
- Fasinu P, Bouic PJ, Rosenkranz B. Liverbased in vitro technologies for drug biotransformation studies-a review. Curr Drug Metab. 2012;13(2):215-24. [Crossref] [PubMed]
- Lerche-Langrand C, Toutain HJ. Precisioncut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology. 2000;153(1-3):221-53. [Crossref]
- Howard RB, Christensen AK, Gibbs FA, Pesch LA. The enzymatic preparation of isolated intact parenchymal cells from rat liver. J Cell Biol. 1967;35(3):675-84. [Crossref] [PubMed] [PMC]
- Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969;43(3):506-20. [Crossref]
- Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29-83. [Crossref]
- Strain AJ. Isolated hepatocytes: use in experimental and clinical hepatology. Gut. 1994;35(4):433-6. [Crossref] [PubMed] [PMC]
- Graf J, Gautam A, Boyer JL. Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci U S A. 1984;81(20):6516-20. [Crossref] [PubMed] [PMC]
- Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985;229(1):221-6. [Crossref] [PubMed] [PMC]
- Osypiw JC, Allen RL, Billington D. Subpopulations of rat hepatocytes separated by Percoll density-gradient centrifugation show characteristics consistent with different acinar locations. Biochem J. 1994;304(Pt 2): 617-24. [Crossref] [PubMed] [PMC]
- Bhogal RH, Hodson J, Bartlett DC, Weston CJ, Curbishley SM, Haughton E, et al. Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience. PLoS One. 2011;6(3): e18222. [Crossref] [PubMed] [PMC]
- Vons C, Pegorier JP, Ivanov MA, Girard J, Melcion C, Cordier A, et al. Comparison of cultured human hepatocytes isolated from surgical biopsies or cold-stored organ donor livers. Toxicol In Vitro. 1990;4(4-5):432-34. [Cross - ref]
- Łaba A, Ostrowska A, Patrzałek D, Paradowski L, Lange A. Characterization of human hepatocytes isolated from non-transplantable livers. Arch Immunol Ther Exp (Warsz). 2005;53(5):442-53.
- Chesné C, Guyomard C, Fautrel A, Poullain MG, Frémond B, De Jong H, et al. Viability and function in primary culture of adult hepatocytes from various animal species and human beings after cryopreservation. Hepatology. 1993;18(2):406-14. [Crossref]
- Fuller BJ, Petrenko AY, Rodriguez JV, Somov AY, Balaban CL, Guibert EE. Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrification. Cryo Letters. 2013;34(4):432-52.
- Abdennebi HB, Steghens JP, Margonari J, Ramella-Virieux S, Barbieux A, Boillot O. Evaluation of parenchymal and nonparenchymal cell injury after different conditions of storage and reperfusion. Transpl Int. 1998;11(5):365-72. [Crossref] [PubMed]
- Diener B, Utesch D, Beer N, Dürk H, Oesch F. A method for the cryopreservation of liver parenchymal cells for studies of xenobiotics. Cryobiology. 1993;30(2):116-27. [Crossref] [PubMed]
- Guillouzo A, Morel F, Fardel O, Meunier B. Use of human hepatocyte cultures for drug metabolism studies. Toxicology. 1993;82(1-3): 209-19. [Crossref]
- Steward AR, Dannan GA, Guzelian PS, Guengerich FP. Changes in the concentration of seven forms of cytochrome P-450 in primary cultures of adult rat hepatocytes. Mol Pharmacol. 1985;27(1):125-32. [PubMed]
- Donato MT, Viitala P, Rodriguez-Antona C, Lindfors A, Castell JV, Raunio H, et al. CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab Dispos. 2000;28(11):1321-6. [PubMed]
- Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem. 2001;268(24):6346-58. [Crossref] [PubMed]
- Westerink WM, Schoonen WG. Phase II en zyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro. 2007;21(8):1592-602. [Crossref] [PubMed]
- Kono Y, Yang S, Roberts EA. Extended primary culture of human hepatocytes in a collagen gel sandwich system. In Vitro Cell Dev Biol Anim. 1997;33(6):467-72. [Crossref] [PubMed]
- Fardel O, Lecureur V, Guillouzo A. Regulation by dexamethasone of P-glycoprotein expression in cultured rat hepatocytes. FEBS Lett. 1993;327(2):189-93. [Crossref]
- Stéphenne X, Najimi M, Sokal EM. Hepatocyte cryopreservation: is it time to change the strategy? World J Gastroenterol. 2010;16(1): 1-14. [PubMed] [PMC]
- Pan J, Hong JY, Li D, Schuetz EG, Guzelian PS, Huang W, et al. Regulation of cytochrome P450 2B1/2 genes by diallyl sulfone, disulfiram, and other organosulfur compounds in primary cultures of rat hepatocytes. Biochem Pharmacol. 1993;45(11):2323-9. [Crossref]
- Schuetz EG, Li D, Omiecinski CJ, MullerEberhard U, Kleinman HK, Elswick B, et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol. 1988;134(3):309-23. [Crossref] [PubMed]
- Schuetz JD, Schuetz EG. Extracellular matrix regulation of multidrug resistance in primary monolayer cultures of adult rat hepatocytes. Cell Growth Differ. 1993;4(1):31-40. [PubMed]
- Adams RLP. Work TS, Burton RH. Cell Culture for Biochemists. 1st ed. Amsterdam; New York: Elsevier/North Holland Biomedical Press; 1980. p.292.
- Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999;13(14):1883-900. [Crossref] [PubMed]
- Weiskirchen R, Gressner AM. Isolation and culture of hepatic stellate cells. Methods Mol Med. 2005;117:99-113. [Crossref]
- Fleischer S, Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6-41. [Crossref]
- Groneberg DA, Grosse-Siestrup C, Fischer A. In vitro models to study hepatotoxicity. Toxicol Pathol. 2002;30(3):394-9. [Crossref] [PubMed]
- Guguen-Guillouzo C, Guillouzo A. General review on in vitro hepatocyte models and their applications. Methods Mol Biol. 2010;640:1-40. [Crossref] [PubMed]
- Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol. 2006;291(1):G1-7. [Crossref] [PubMed]
- Macé K, Offord EA, Harris CC, Pfeifer AM. Development of in vitro models for cellular and molecular studies in toxicology and chemoprevention. Arch Toxicol Suppl. 1998;20:227-36. [Crossref] [PubMed]
- Stoddart MJ. Mammalian Cell Viability: Methods and Protocols, Methods in Molecular Biology. Vol. 740. 1st ed. New York: Humana Press/Springer; 2011. p.240. [Crossref] [PubMed]
- Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271-7. [Crossref]
- Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;2016(4):pdb.prot087379.
- Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, et al. A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen. 2007;12(7):925-37. [Crossref] [PubMed]
- Zuang V. The neutral red release assay: a review. Altern Lab Anim. 2001;29(5):575-99. [PubMed]
- Smith CG, Grady JE, Northam JI. Relationship between cytotoxicity in vitro and whole animal toxicity. Cancer Chemother Rep. 1963;30:912. [PubMed]
- Reed DJ, Fariss MW, Pascoe GA. Mechanisms of chemical toxicity and cellular protection systems. Fundam Appl Toxicol. 1986;6(4):591-7. [Crossref]
- Macé K, Offord EA, Harris CC, Pfeifer AM. Development of in vitro models for cellular and molecular studies in toxicology and chemoprevention. Arch Toxicol Suppl. 1998;20:22736. [Crossref] [PubMed]
- Chaudhari P, Prasad N, Tian L, Jang YY. De termination of functional activity of human İPSC-derived hepatocytes by measurement of CYP metabolism. Methods Mol Biol. 2016;1357:383-94. [Crossref] [PubMed]
- Neupert D, Glöckner R, Neupert G, Müller D. Ultrastructural changes in hepatocytes of pre cision-cut rat liver slices after incubation for 24 and 48 hours. Exp Toxicol Pathol. 2003;54(56):481-8. [Crossref] [PubMed]
- Shen C, Meng Q. Prediction of cytochrome 450 mediated drug-drug interactions by threedimensional cultured hepatocytes. Mini Rev Med Chem. 2012;12(10):1028-36. [Crossref] [PubMed]
- Donato MT, Lahoz A, Castell JV, GómezLechón MJ. Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab. 2008;9(1):1-11. [Crossref] [PubMed]
- Berthou F, Goasduff T, Dréano Y, Ménez JF. Caffeine increases its own metabolism through cytochrome P4501A induction in rats. Life Sci. 1995;57(6):541-9. [Crossref]
- Greim H, Andrae U, Forster U, Schwarz L. Application, limitations and research requirements of in vitro test systems in toxicology. Arch Toxicol Suppl. 1986;9:225-36. [Crossref] [PubMed]
- Villa P, Bégué JM, Guillouzo A. Effects of erythromycin derivatives on cultured rat hepatocytes. Biochem Pharmacol. 1984;33(24): 4098-101. [Crossref]
- Rasmussen MK, Balaguer P, Ekstrand B, Daujat-Chavanieu M, Gerbal-Chaloin S. Skatole (3-methylindole) is a partial Aryl hydrocarbon receptor agonist and induces CYP1A1/2 and CYP1B1 expression in primary human hepatocytes. PLoS One. 2016;11(5): e0154629. [Crossref] [PubMed] [PMC]
- Smith MT, Thor H, Orrenius S. Toxic injury to isolated hepatocytes is not dependent on extracellular calcium. Science. 1981;213(4513): 1257-9. [Crossref] [PubMed]
- Li AP. Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact. 2007;168(1): 16-29. [Crossref] [PubMed]
- Fautrel A, Chesné C, Guillouzo A, de Sousa G, Placidi M, Rahmani R, et al. A multicentre study of acute in vitro cytotoxicity in rat liver cells. Toxicol In Vitro. 1991;5(5-6):543-7. [Crossref]
- Ratanasavanh D, Riche C, Begue J, Guillouzo A. Les hepatocytes en culture: utilisation en pharmacotoxicologie. In: Adolphe M, Guillouzo A, eds. Metodes In Vitro en Pharmacotoxicologie. Vol 170. 1 st ed. Paris: Les Editions INSERM; 1998. p.1-16.
- Li AP, Lu C, Brent JA, Pham C, Fackett A, Ruegg CE, et al. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact. 1999;121(1):17-35. [Crossref]
- Gómez-Lechón MJ, Lahoz A, Gombau L, Castell JV, Donato MT. In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des. 2010;16(17):1963-77. [Crossref] [PubMed]
- Persson M, Løye AF, Jacquet M, Mow NS, Thougaard AV, Mow T, et al. High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity. Basic Clin Pharmacol Toxicol. 2014;115(1): 18-23. [Crossref] [PubMed]
- Amacher DE, Martin BA. Tetracycline-induced steatosis in primary canine hepatocyte cultures. Fundam Appl Toxicol. 1997;40(2):256-63. [Crossref]
- Hardwick SJ, Wilson JW, Fawthrop DJ, Boobis AR, Davies DS. Paracetamol toxicity in hamster isolated hepatocytes: the increase in cytosolic calcium accompanies, rather than precedes, loss of viability. Arch Toxicol. 1992;66(6):408-12. [Crossref] [PubMed]
- Chan KW, Ho WS. Anti-oxidative and hepatoprotective effects of lithospermic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo. Oncol Rep. 2015;34(2):673-80. [Crossref] [PubMed]
.: Process List