Tiyomersal aşılara antibakteriyel ve antifungal koruyucu olarak eklenen organik cıva bileşiğidir. Aşılar dışında birçok tıbbi ürün (immünglobulin preparatları, antitoksinler, deri preperatları, göz/kulak/burun damlaları, antiseptik merhemler, spreyler) ve kozmetik ürününde de kullanılmaktadır. Tiyomersalin molekül yapısının yaklaşık %50'sini cıva oluşturmaktadır ve organik cıva bileşiklerine maruziyetle otizm spektrum bozukluğu (OSB)'nun ortaya çıkabileceği literatürde yer almaktadır. Özellikle 2000'li yıllarda otizm olgularında görülen artışlar, tiyomersalin otizme neden olabileceğine dair endişeleri beraberinde getirmiştir. OSB, farklı genetik ve çevresel kökenlere sahip heterojen bir nörodavranışsal sorunlar bütünüdür. Bu patolojilerin karmaşıklığı ve kesin olarak bilinen diagnostik biyogöstergelerin bulunmaması nedeniyle OSB fenotipik davranış özellikleri ile tanımlanır. Çocukluk çağında, aşılama ile OSB arasındaki olası ilişki potansiyel bir çevresel neden olarak öne sürülmüştür. Cıva ve OSB arasındaki ilişkiye dair endişeler, ilk olarak 1990'larda başlamıştır. Şüpheler nedeniyle tiyomersal, günümüzde ülkemiz dâhil birçok ülkede çocukluk çağında kullanılan aşılardan tamamen kaldırılmıştır. Ancak ABD'de ve gelişmekte olan ülkelerde, bazı aşılar hâlâ tiyomersal içermektedir. Birçok düzenleyici kuruluş aşılama ile maruz kalınan cıva miktarının oldukça düşük olduğunu ve bu miktarın herhangi bir patolojik duruma neden olmayacağını defalarca ifade etse de günümüzde tiyomersal ile ilgili spekülasyonlar nedeniyle aşı kararsızlığı giderek artmaktadır. Ancak aşılama toplum sağlığının korunması için mutlaka gereklidir. Henüz kesinleşmemiş ve belki de hiç olmayan bu ilişki için çocukları aşılatmamak tüm toplumu büyük risk altına sokmaktadır. Bu derlemede, otizm, tiyomersal ve tiyomersal ile otizm arasındaki olası ilişki hakkında bilgi verilmesi amaçlanmıştır.
Anahtar Kelimeler: Otizm; tiyomersal; aşı; aşı kararsızlığı
Thiomersal is an organic mercury compound used as antibacterial and antifungal preservative in vaccines. Other than vaccines, it is used in many medical products (immunoglobulin preparations, antitoxins, skin preparations; eye/ear/nose drops; antiseptic ointments, sprays) and cosmetics. The molecular structure of thiomersal consists of 50% mercury and literature suggests that exposure to organic mercury compunds may lead to autism spectrum disorders (ASD). Particularly in 2000s, concerns about thiomersal as a cause of autism has raised. ASD is a combination of heterogeneous neurobehavioral problems with different genetic and environmental origins. Because of the complexity of these pathologies and absence of a well-known diagnostic marker, ASD is characterized by phenotypic behavioral features. Interaction between childhood vaccination and ASD is put forward as a potential environmental cause. Concerns about the association between mercury and ASD first began in the 1990s. Because of doubts, thiomersal has been completely removed from childhood vaccines in many countries, including our country. However, some vaccines in use in the United States and developing countries still contain thiomersal. Although many regulatory organizations have repeatedly stated that amount of mercury exposure by vaccines is very low and will not cause any pathological conditions, vaccine hesitancy is gradually increasing due to speculations about thiomersal. However, vaccination is absolutely neccesary to protect public health. Avoiding childhood vaccination due to unascertained or non-existant relationship puts the whole population under great risk. In this review, we aimed to give information about autism, thiomersal and possible connection between thiomersal and autism.
Keywords: Autism; thiomersal; vaccine; vaccine hesitancy
- Karimi P, Kamali E, Mousavi SM, Karahmadi M. Environmental factors influencing the risk of autism. J Res Med Sci. 2017;22:27.[Crossref] [PubMed] [PMC]
- Ergaz Z, Weinstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol. 2016;64:116-40.[Crossref] [PubMed]
- American Psychiatric Association. The Diagnostic and Statistical Manual of Mental Disorders: DSM 5. 5th ed. Arlington, VA: Bookpoint; 2013.[Link]
- Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elem Med Biol. 2016;37:8-24.[Crossref] [PubMed]
- Laurence JA, Fatemi SH. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 2005;4(3):206-10.[Crossref] [PubMed]
- Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the cerebral cortex in autism. J Autism Dev Disord. 2012;42(12):2569-84.[Crossref] [PubMed]
- Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1-2):111-6.[Crossref] [PubMed] [PMC]
- Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 2011;7(2-4):205-13.[Crossref] [PubMed] [PMC]
- Ornoy A, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol. 2015;56:155-69.[Crossref] [PubMed]
- Bridgemohan C, Cochran DM, Howe YJ, Pawlowski K, Zimmerman AW, Anderson GM, et al. Investigating Potential Biomarkers in Autism Spectrum Disorder. Front Integr Neurosci. 2019;13:31.[Crossref] [PubMed] [PMC]
- Wang L, Angley MT, Gerber JP, Sorich MJ. A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers. 2011;16(7):537-52.[Crossref] [PubMed]
- Tordjman S, Anderson GM, Bellissant E, Botbol M, Charbuy H, Camus F, et al. Day and nighttime excretion of 6-sulphatoxymelatonin in adolescents and young adults with autistic disorder. Psychoneuroendocrinology. 2012;37(12):1990-7.[Crossref] [PubMed]
- Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24(6):919-29.[Crossref] [PubMed]
- Hammock E, Veenstra-VanderWeele J, Yan Z, Kerr TM, Morris M, Anderson GM, et al. Examining autism spectrum disorders by biomarkers: example from the oxytocin and serotonin systems. J Am Acad Child Adolesc Psychiatry. 2012;51(7):712-21.e1.Erratum in: J Am Acad Child Adolesc Psychiatry. 2012;51(8):851.[Crossref] [PubMed] [PMC]
- Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, Drouot X, et al. The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders. Transl Psychiatry. 2014;4(11):e479.[Crossref] [PubMed] [PMC]
- Mulder EJ, Anderson GM, Kemperman RF, Oosterloo-Duinkerken A, Minderaa RB, Kema IP. Urinary excretion of 5-hydroxyindoleacetic acid, serotonin and 6-sulphatoxymelatonin in normoserotonemic and hyperserotonemic autistic individuals. Neuropsychobiology. 2010;61(1):27-32.[Crossref] [PubMed]
- Kolevzon A, Newcorn JH, Kryzak L, Chaplin W, Watner D, Hollander E, et al. Relationship between whole blood serotonin and repetitive behaviors in autism. Psychiatry Res. 2010;175(3):274-6.[Crossref] [PubMed] [PMC]
- Sacco R, Militerni R, Frolli A, Bravaccio C, Gritti A, Elia M, et al. Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry. 2007;62(9):1038-47.[Crossref] [PubMed]
- Schaefer GB, Mendelsohn NJ; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders. Genet Med. 2008;10(4):301-5.[Crossref] [PubMed] [PMC]
- Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749-64.[Crossref] [PubMed] [PMC]
- Hönekopp J. Digit ratio 2D:4D in relation to autism spectrum disorders, empathizing, and systemizing: a quantitative review. Autism Res. 2012;5(4):221-30.[Crossref] [PubMed]
- Aldinger KA, Lane CJ, Veenstra-VanderWeele J, Levitt P. Patterns of Risk for Multiple Co-Occurring Medical Conditions Replicate Across Distinct Cohorts of Children with Autism Spectrum Disorder. Autism Res. 2015;8(6):771-81.[Crossref] [PubMed] [PMC]
- Sealey LA, Hughes BW, Sriskanda AN, Guest JR, Gibson AD, Johnson-Williams L, et al. Environmental factors in the development of autism spectrum disorders. Environ Int. 2016;88:288-98.[Crossref] [PubMed]
- Weiss LA, Arking DE; Gene Discovery Project of Johns Hopkins & the Autism Consortium, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461(7265):802-8.[Crossref] [PubMed] [PMC]
- Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24(8):3036-51.[Crossref] [PubMed] [PMC]
- Landrigan PJ, Lambertini L, Birnbaum LS. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect. 2012;120(7):a258-60.[Crossref] [PubMed] [PMC]
- Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, et al. Autism Consortium Clinical Genetics/DNA Diagnostics Collaboration. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 2010;125(4):e727-35.[Crossref] [PubMed] [PMC]
- Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095-102.[Crossref] [PubMed] [PMC]
- Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15(9):409-16.[Crossref] [PubMed] [PMC]
- Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31(3):363-73.[Crossref] [PubMed] [PMC]
- Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One. 2008;3(7):e2698.[Crossref] [PubMed] [PMC]
- Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167-78.[Crossref] [PubMed]
- Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609-62.[Crossref] [PubMed]
- Dórea JG, Farina M, Rocha JB. Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury. J Appl Toxicol. 2013;33(8):700-11.[Crossref] [PubMed]
- Smithburn KC, Kempf GE, Zerfas LG, Gilman LH. Meningococcic meningitis: a clinical study of one hundred and forty-four cases. JAMA. 1930;95(11):776-80.[Crossref]
- Stetler HC, Garbe PL, Dwyer DM, Facklam RR, Orenstein WA, West GR, et al. Outbreaks of group A streptococcal abscesses following diphtheria-tetanus toxoid-pertussis vaccination. Pediatrics. 1985;75(2):299-303.[PubMed]
- Khandke L, Yang C, Krylova K, Jansen KU, Rashidbaigi A. Preservative of choice for Prev(e)nar 13? in a multi-dose formulation. Vaccine. 2011;29(41):7144-53.[Crossref] [PubMed]
- Uchida T, Naito S, Kato H, Hatano I, Harashima A, Terada Y, et al. Thimerosal induces toxic reaction in non-sensitized animals. Int Arch Allergy Immunol. 1994;104(3):296-301.[Crossref] [PubMed]
- Gama Ker H, Dian de Oliveira Aguiar-Soares R, Mendes Roatt B, das Dores Moreira N, Coura-Vital W, Martins Carneiro C, et al. Effect of the preservative and temperature conditions on the stability of Leishmania infantum promastigotes antigens applied in a flow cytometry diagnostic method for canine visceral leishmaniasis. Diagn Microbiol Infect Dis. 2013;76(4):470-6.[Crossref] [PubMed]
- Mason JM, Osborne PT, Hall AJ, Skolnik JS, Woods LL, Wood CL, et al. Example of a thimerosal-dependent antibody without apparent blood group specificity. Vox Sang. 1985;48(5):313-6.[Crossref] [PubMed]
- Towne V, Oswald CB, Mogg R, Antonello J, Will M, Gimenez J, et al. Measurement and decomposition kinetics of residual hydrogen peroxide in the presence of commonly used excipients and preservatives. J Pharm Sci. 2009;98(11):3987-96.[Crossref] [PubMed]
- Centers for Disease Control and Prevention (CDC). Thimerosal in vaccines: a joint statement of the American Academy of Pediatrics and the Public Health Service. MMWR Morb Mortal Wkly Rep. 1999;48(26):563-5.[PubMed]
- Thimerosal in vaccines--An interim report to clinicians. American Academy of Pediatrics. Committee on Infectious Diseases and Committee on Environmental Health. Pediatrics. 1999;104(3 Pt 1):570-4.[Crossref] [PubMed]
- Hurley AM, Tadrous M, Miller ES. Thimerosal-containing vaccines and autism: a review of recent epidemiologic studies. J Pediatr Pharmacol Ther. 2010;15(3):173-81.[Crossref] [PubMed] [PMC]
- TC Sağlık Bakanlığı. Aşı Portalı. Aşı İçerikleri. 2018. (Erişim Tarihi: 19.09.2019)[Link]
- Bigham M, Copes R. Thiomersal in vaccines: balancing the risk of adverse effects with the risk of vaccine-preventable disease. Drug Saf. 2005;28(2):89-101.[Crossref] [PubMed]
- Madsen KM, Hviid A, Vestergaard M, Schendel D, Wohlfahrt J, Thorsen P, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med. 2002;347(19):1477-82.[Crossref] [PubMed]
- Andrews N, Miller E, Grant A, Stowe J, Osborne V, Taylor B. Thimerosal exposure in infants and developmental disorders: a retrospective cohort study in the United kingdom does not support a causal association. Pediatrics. 2004;114(3):584-91.[Crossref] [PubMed]
- Verstraeten T, Davis RL, DeStefano F, Lieu TA, Rhodes PH, Black SB, et al; Vaccine Safety Datalink Team. Safety of thimerosal-containing vaccines: a two-phased study of computerized health maintenance organization databases. Pediatrics. 2003;112(5):1039-48. Erratum in: Pediatrics. 2004;113(1):184.[PubMed]
- World Health Organization. Global Advisory Committee on Vaccine Safety, 2006.Erişim Tarihi: 11.12.2019.[Link]
- Institute of Medicine (US) Immunization Safety Review Committee. Immunization Safety Review: Thimerosal-Containing Vaccines and Neurodevelopmental Disorders. Stratton K, Gable A, McCormick MC, eds. Washington (DC): National Academies Press (US);2001.[PubMed]
- Landrigan PJ, Kimmel CA, Correa A, Eskenazi B. Children's health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect. 2004;112(2):257-65.[Crossref] [PubMed] [PMC]
- Cinca I, Dumitrescu I, Onaca P, Serbänescu A, Nestorescu B. Accidental ethyl mercury poisoning with nervous system, skeletal muscle, and myocardium injury. J Neurol Neurosurg Psychiatry. 1980;43(2):143-9.[Crossref] [PubMed] [PMC]
- Jafari T, Rostampour N, Fallah AA, Hesami A. The association between mercury levels and autism spectrum disorders: A systematic review and meta-analysis. J Trace Elem Med Biol. 2017;44:289-297.[Crossref] [PubMed]
- Holmes AS, Blaxill MF, Haley BE. Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol. 2003;22(4):277-85.[Crossref] [PubMed]
- Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M, et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet. 1998;351(9103):637-41. Retraction in: Lancet. 2010;375(9713):445. Erratum in: Lancet. 2004;363(9411):750.[Crossref] [PubMed]
- Newschaffer CJ, Fallin D, Lee NL. Heritable and nonheritable risk factors for autism spectrum disorders. Epidemiol Rev. 2002;24(2):137-53.[Crossref] [PubMed]
- Grønborg TK, Schendel DE, Parner ET. Recurrence of autism spectrum disorders in full- and half-siblings and trends over time: a population-based cohort study. JAMA Pediatr. 2013;167(10):947-53.[Crossref] [PubMed] [PMC]
- Tomljenovic L, Shaw CA. "One-size fits all"? Vaccine. 2012;30(12):2040.[Crossref] [PubMed]
- Dórea JG. Abating Mercury Exposure in Young Children Should Include Thimerosal-Free Vaccines. Neurochem Res. 2017;42(10):2673-85.[Crossref] [PubMed]
- Geier DA, Kern JK, King PG, Sykes LK, Geier MR. The risk of neurodevelopmental disorders following a thimerosal-preserved DTaP formulation in comparison to its thimerosal-reduced formulation in the Vaccine Adverse Event Reporting System (VAERS). J Biochem Pharmacol Res. 2014;2(2):64-73.[Link]
- Dórea JG. Making sense of epidemiological studies of young children exposed to thimerosal in vaccines. Clin Chim Acta. 2010;411(21-2):1580-6.[Crossref] [PubMed]
- Thompson WW, Price C, Goodson B, Shay DK, Benson P, Hinrichsen VL, et al. Vaccine Safety Datalink Team. Early thimerosal exposure and neuropsychological outcomes at 7 to 10 years. N Engl J Med. 2007;357(13):1281-92.[Crossref] [PubMed]
- Uno Y, Uchiyama T, Kurosawa M, Aleksic B, Ozaki N. Early exposure to the combined measles-mumps-rubella vaccine and thimerosal-containing vaccines and risk of autism spectrum disorder. Vaccine. 2015;33(21):2511-6.[Crossref] [PubMed]
- Yoshimasu K, Kiyohara C, Takemura S, Nakai K. A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology. 2014;44:121-31.[Crossref] [PubMed]
- Young HA, Geier DA, Geier MR. Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci. 2008;271(1-2):110-8.[Crossref] [PubMed]
- Gallagher CM, Goodman MS. Hepatitis B vaccination of male neonates and autism diagnosis, NHIS 1997-2002. J Toxicol Environ Health A. 2010;73(24):1665-77.[Crossref] [PubMed]
- Geier DA, Mumper E, Gladfelter B, Coleman L, Geier MR. Neurodevelopmental disorders, maternal Rh-negativity, and Rho(D) immune globulins: a multi-center assessment. Neuro Endocrinol Lett. 2008;29(2):272-80.[PubMed]
- Geier DA, Geier MR. A case series of children with apparent mercury toxic encephalopathies manifesting with clinical symptoms of regressive autistic disorders. J Toxicol Environ Health A. 2007;70(10):837-51.[Crossref] [PubMed]
- Fagan DG, Pritchard JS, Clarkson TW, Greenwood MR. Organ mercury levels in infants with omphaloceles treated with organic mercurial antiseptic. Arch Dis Child. 1977;52(12):962-4.[Crossref] [PubMed] [PMC]
- Mutter J, Naumann J, Schneider R, Walach H, Haley B. Mercury and autism: accelerating evidence? Neuro Endocrinol Lett. 2005;26(5):439-46.[PubMed]
- Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect. 2005;113(8):1015-21.[Crossref] [PubMed] [PMC]
- Gadad BS, Li W, Yazdani U, Grady S, Johnson T, Hammond J, et al. Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology. Proc Natl Acad Sci U S A. 2015;112(40):12498-503.[Crossref] [PubMed] [PMC]
- Namvarpour Z, AminiA, Nasehi M, Zarrindast MR. The Effects of Early Exposure to Thimerosal on Impairments of Social and Stereotyped Behaviors and the Number of Purkinje Cells of Cerebellum in Rats. J Appl Biotechnol Rep. 2018;5(3):105-11.[Crossref]
- Rose S, Wynne R, Frye RE, Melnyk S, James SJ. Increased susceptibility to ethylmercury-induced mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines. J Toxicol. 2015;2015:573701.[Crossref] [PubMed] [PMC]
.: Process List