Süt sığırlarında ketozis, asidoz gibi verimliliği olumsuz etkileyen çeşitli stres faktörleri vardır. Bu faktörler, geçirgen bağırsak sendromuna neden olabilmektedir. Bağırsak, karmaşık ve sürekli değişen ortamı kalıcı olarak algılayan, işleyen ve ona tepki veren bir duyu organıdır. Bağırsak bir bariyer ve endokrin organ olmasının yanı sıra birincil lenfoid organdır. İntestinal sistem zararlı etkenlere karşı bariyer görevi görürken, besin maddelerinin ve diğer bileşiklerin seçici emilimini içeren birçok hayati fonksiyona sahiptir. Bağırsak duvarını koruyan fiziksel ve kimyasal olmak üzere 2 tür bariyer vardır. Fiziksel bariyerler, bağırsak mukozasını kaplayan goblet hücreleri tarafından salgılanan viskoz bir mukustan oluşur. Kimyasal bariyer ise bu mukus tabakası içerisinde bulunur. Mukus tabakası içinde, epitelde paneth hücreleri tarafından üretilen antimikrobiyal peptidler ve rejenere adacık kaynaklı 3 (Reg3) molekülü bulunur. Kimyasal bariyer molekülleri, bağırsak mikroorganizmalarının parçalanmasını ve bağırsak duvarına nüfuz etmesini engellemek için çalışır. Bağırsak yüzeyinde bariyer görevi gören başka faktörler de vardır. Bunlar, mukoza yüzeyindeki sıkı bağlantı odaklarını oluşturan fosfolipidler, proteinler ve lenfositlerin de dâhil olduğu bağırsak immün sistemi ve bağırsak mikrobiyotasıdır. Bağırsak bariyerinin bozulmasıyla birlikte lipopolisakkaridlerin kana geçmesi istenmeyen sonuçlara sebep olmaktadır. Bu stres faktörlerini önlemede besleme ön plana çıkmaktadır. Bu derlemede, geçirgen bağırsak sendromu ve bu sendroma sebep olan etkenleri önlemeye dair bilgi verilmesi amaçlanmıştır.
Anahtar Kelimeler: Stres faktörleri; besleme; geçirgen bağırsak sendromu; süt sığırı
Various stress factors adversely affect productivity, such as ketosis and acidosis in dairy cattle. These factors can cause leaky gut syndrome. The gut is a sensory organ that permanently perceives, processes and responds to the complex and ever-changing environment. In addition to being a barrier and endocrine organ, the intestine is the primary lymphoid organ. While the intestinal tract acts as a barrier against harmful agents, it has many vital functions, including selective absorption of nutrients and other compounds. Two types of barriers, physical and chemical, protect the intestinal wall. Physical barriers consist of a viscous mucus secreted by the goblet cells lining the intestinal mucosa. The chemical barrier is found in this mucus layer. Within the mucus layer are antimicrobial peptides produced by paneth cells in the epithelium and 3 (Reg3) molecules from regenerated islets. Chemical barrier molecules prevent intestinal microorganisms from breaking down and penetrating the intestinal wall. Other factors act as a barrier on the intestinal surface. These are the intestinal immune system and microbiota, including the phospholipids, proteins and lymphocytes forming tight junctional foci on the mucosal surface. With the deterioration of the intestinal barrier, the passage of lipopolysaccharides into the blood causes undesirable results. Nutrition comes to the fore in preventing these stress factors. This review aims to give information about leaky gut syndrome and the prevention of factors causing it.
Keywords: Stress factors; nutrition; leaky gut syndrome; dairy cattle
- Sanz-Fernandez MV, Stoakes SK, Johnson JS, Abuajamieh M, Seibert JT, Pearce SC, et al. Heat Stress: What's the Gut Got To Do With It? Herd Health and Nutrition Conferences. 2015. [Link]
- Rodriguez-Jimenez S, Horst EA, Mayorga EJ, Kvidera SK, Abeyta MA, Goetz BM, et al. The what, why, and physiologic cost of leaky gut syndrome. American Association of Bovine Practitioners Proceedings of the Annual Conference. 2019;165-71. [Link]
- Stewart AS, Pratt-Phillips S, Gonzalez LM. Alterations in Intestinal Permeability: The Role of the "Leaky Gut" in Health and Disease. J Equine Vet Sci. 2017;52:10-22. [Crossref] [PubMed] [PMC]
- Tabakoğlu E, Durgut R. Veteriner hekimlikte oksidatif stres ve bazı önemli hastalıklarda oksidatif stresin etkileri [Oxidative stress in veterinary medicine and effects in some important diseases]. Avkae Derg. 2013;3(1):69-75. [Link]
- Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev. 2016;2016:1245049. [Crossref] [PubMed] [PMC]
- Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329-54. [Crossref] [PubMed] [PMC]
- Dam B, Misra, Banerjee S. Role of Gut Microbiota in Combating Oxidative Stress. In: Chakraborti S, Chakraborti T, Chattopadhyay D, Shaha C, eds. Oxidative Stress in Microbial Diseases. 1st ed. Singapore: Springer; 2019. p.45-9. [Link]
- Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol. 2013;11(9):1075-83. [Crossref] [PubMed] [PMC]
- Gareau MG, Silva MA, Perdue MH. Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med. 2008;8(4):274-81. [Crossref] [PubMed]
- Kvidera SK, Dickson MJ, Abuajamieh M, Snider DB, Fernandez MVS, Johnson JS, et al. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J Dairy Sci. 2017;100(5):4113-27. [Crossref] [PubMed]
- Boudry G, Péron V, Le Huërou-Luron I, Lallès JP, Sève B. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J Nutr. 2004;134(9):2256-62. [Crossref] [PubMed]
- Moeser AJ, Klok CV, Ryan KA, Wooten JG, Little D, Cook VL, et al. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G173-81. [Crossref] [PubMed]
- Baumgard LH, Rhoads RP Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci. 2013;1:311-37. [Crossref] [PubMed]
- Ruiz-González A, Rico DE, Rico JE. Modulation of fecal metabolites by heat stress and diet, and their association with ınflammation and leaky gut markers in dairy cows. Metabolites. 2022;12(2):142. [Crossref] [PubMed] [PMC]
- Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, et al. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS One. 2013;8(8):e70215. [Crossref] [PubMed] [PMC]
- Emmanuel DG, Madsen KL, Churchill TA, Dunn SM, Ametaj BN. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. J Dairy Sci. 2007;90(12):5552-7. [Crossref] [PubMed]
- Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci. 2009;92(3):1060-70. [Crossref] [PubMed]
- Minuti A, Ahmed S, Trevisi E, Piccioli-Cappelli F, Bertoni G, Jahan N, et al. Experimental acute rumen acidosis in sheep: consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. J Anim Sci. 2014;92(9):3966-77. [Crossref] [PubMed]
- Zhang S, Albornoz RI, Aschenbach JR, Barreda DR, Penner GB. Short-term feed restriction impairs the absorptive function of the reticulo-rumen and total tract barrier function in beef cattle. J Anim Sci. 2013;91(4):1685-95. [Crossref] [PubMed]
- Atrian P, Shahryar HA. Heat stress in dairy cows (a review). Research in Zoology. 2012;2(4):31-7. [Link]
- Hall DM, Baumgardner KR, Oberley TD, Gisolfi CV. Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Physiol. 1999;276(5):G1195-203. [Crossref] [PubMed]
- Hall DM, Buettner GR, Oberley LW, Xu L, Matthes RD, Gisolfi CV. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol. 2001;280(2):H509-21. [Crossref] [PubMed]
- Sammad A, Wang YJ, Umer S, Lirong H, Khan I, Khan A, et al. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals (Basel). 2020;10(5):793. [Crossref] [PubMed] [PMC]
- Ceciliani F, Ceron JJ, Eckersall PD, Sauerwein H. Acute phase proteins in ruminants. J Proteomics. 2012;75(14):4207-31. [Crossref] [PubMed]
- Graber CD, Reinhold RB, Breman JG, Harley RA, Hennigar GR. Fatal heat stroke. Circulating endotoxin and gram-negative sepsis as complications. JAMA. 1971;216(7):1195-6. [Crossref] [PubMed]
- Leon LR. Heat stroke and cytokines. Prog Brain Res. 2007;162:481-524. [Crossref] [PubMed]
- Chen Y, Arsenault R, Napper S, Griebel P. Models and methods to investigate acute stress responses in cattle. Animals (Basel). 2015;5(4):1268-95. [Crossref] [PubMed] [PMC]
- Pederzolli RA, Van Kessel AG, Campbell J, Hendrick S, Wood KM, Penner GB. Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers. J Anim Sci. 2018;96(1):108-25. [Crossref] [PubMed] [PMC]
- Bertoni G, Trevisi E, Han X, Bionaz M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J Dairy Sci. 2008;91(9):3300-10. [Crossref] [PubMed]
- Abuajamieh M, Kvidera SK, Fernandez MV, Nayeri A, Upah NC, Nolan EA, et al. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. Res Vet Sci. 2016;109:81-5. [Crossref] [PubMed]
- Humblet MF, Guyot H, Boudry B, Mbayahi F, Hanzen C, Rollin F, et al. Relationship between haptoglobin, serum amyloid A, and clinical status in a survey of dairy herds during a 6-month period. Vet Clin Pathol. 2006;35(2):188-93. [Crossref] [PubMed]
- Trevisi E, Minuti A. Assessment of the innate immune response in the periparturient cow. Res Vet Sci. 2018;116:47-54. [Crossref] [PubMed]
- Newby NC, Leslie KE, Dingwell HDP, Kelton DF, Weary DM, Neuder L, et al. The effects of periparturient administration of flunixin meglumine on the health and production of dairy cattle. J Dairy Sci. 2017;100(1):582-7. [Crossref] [PubMed]
- Enemark JM. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): a review. Vet J. 2008;176(1):32-43. [Crossref] [PubMed]
- Kleen JL, Hooijer GA, Rehage J, Noordhuizen JP. Subacute ruminal acidosis (SARA): a review. J Vet Med A Physiol Pathol Clin Med. 2003;50(8):406-14. [Crossref] [PubMed]
- Guo J, Chang G, Zhang K, Xu L, Jin D, Bilal MS, et al. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget. 2017;8(29):46769-80. [Crossref] [PubMed] [PMC]
- Li S, Khafipour E, Krause DO, Kroeker A, Rodriguez-Lecompte JC, Gozho GN, et al. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci. 2012;95(1):294-303. [Crossref] [PubMed]
- Lambert GP, Schmidt A, Schwarzkopf K, Lanspa S. Effect of aspirin dose on gastrointestinal permeability. Int J Sports Med. 2012;33(6):421-5. [Crossref] [PubMed]
- Briggs NG, Brennan KM, Funnell BJ, Nicholls GT, Schoonmaker JP. Use of aspirin to intentionally induce gastrointestinal tract barrier dysfunction in feedlot cattle. J Anim Sci. 2020;98(9):skaa264. [Crossref] [PubMed] [PMC]
- Takeuchi K, Amagase K. Roles of cyclooxygenase, prostaglandin E2 and EP receptors in mucosal protection and ulcer healing in the gastrointestinal tract. Curr Pharm Des. 2018;24(18):2002-11. [Crossref] [PubMed]
- Bjarnason I, Williams P, Smethurst P, Peters TJ, Levi AJ. Effect of non-steroidal anti-inflammatory drugs and prostaglandins on the permeability of the human small intestine. Gut. 1986;27(11):1292-7. [Crossref] [PubMed] [PMC]
- Bjarnason I, Hayllar J, MacPherson AJ, Russell AS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology. 1993;104(6):1832-47. [Crossref] [PubMed]
- Gingerich DA, Baggot JD, Yeary RA. Pharmacokinetics and dosage of aspirin in cattle. J Am Vet Med Assoc. 1975;167(10):945-8. [PubMed]
- Bravo DM, Wall EH. The rumen and beyond: Nutritional physiology of the modern dairy cow. J Dairy Sci. 2016;99(6):4939-40. [Crossref] [PubMed]
- Bradford BJ, Yuan K, Ylioja C. Managing complexity: Dealing with systemic crosstalk in bovine physiology. J Dairy Sci. 2016;99(6):4983-96. [Crossref] [PubMed]
- Stoakes SK, Abuajamieh M, Sanz-Fernandez V, Seibert JT, Nolan E, Rhoads RP, et al. Evaluating compounds with influence in the gut. In Proceedings of the 75th annual Minnesota Nutrition Conference. 2014. p.33-48.
- Singleton KD, Wischmeyer PE. Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia. Shock. 2006;25(3):295-9. [Crossref] [PubMed]
- Caroprese M, Albenzio M, Marino R, Santillo A, Sevi A. Dietary glutamine enhances immune responses of dairy cows under high ambient temperature. J Dairy Sci. 2013;96(5):3002-11. [Crossref] [PubMed]
- Zhang B, Guo Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr. 2009;102(5):687-93. [Crossref] [PubMed]
- Wang X, Valenzano MC, Mercado JM, Zurbach EP, Mullin JM. Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Dig Dis Sci. 2013;58(1):77-87. [Crossref] [PubMed]
- Mao X, Qi S, Yu B, He J, Yu J, Chen D. Zn(2+) and L-isoleucine induce the expressions of porcine β-defensins in IPEC-J2 cells. Mol Biol Rep. 2013;40(2):1547-52. [Crossref] [PubMed]
- Chauhan SS, Rashamol VP, Bagath M, Sejian V, Dunshea FR. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int J Biometeorol. 2021;65(7):1231-44. [Crossref] [PubMed]
- Buffinton GD, Doe WF. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic Biol Med. 1995;19(6):911-8. [Crossref] [PubMed]
- Elli M, Aydin O, Bilge S, Bozkurt A, Dagdemir A, Pinarli FG, et al. Protective effect of vitamin A on ARA-C induced intestinal damage in mice. Tumori. 2009;95(1):87-90. [Crossref] [PubMed]
- Yang Y, Yuan Y, Tao Y, Wang W. Effects of vitamin A deficiency on mucosal immunity and response to intestinal infection in rats. Nutrition. 2011;27(2):227-32. [Crossref] [PubMed]
- Kucuk O, Sahin N, Sahin K. Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biol Trace Elem Res. 2003;94(3):225-35. [Crossref] [PubMed]
- Singh PK, Wise SY, Ducey EJ, Fatanmi OO, Elliott TB, Singh VK. α-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury. Radiat Res. 2012;177(2):133-45. [Crossref] [PubMed]
- Sahin K, Kucuk O, Sahin N, Sari M. Effects of vitamin C and vitamin E on lipid peroxidation status, serum hormone, metabolite, and mineral concentrations of Japanese quails reared under heat stress (34 degrees C). Int J Vitam Nutr Res. 2002;72(2):91-100. [Crossref] [PubMed]
- Alhidary IA, Shini S, Al Jassim RA, Gaughan JB. Effect of various doses of injected selenium on performance and physiological responses of sheep to heat load. J Anim Sci. 2012;90(9):2988-94. [Crossref] [PubMed]
- Al-Saiady MY, Al-Shaikh MA, Al-Mufarrej SI, Al-Showeimi TA, Mogawer HH, Dirrar A. Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Animal Feed Science and Technology. 2004;117(3-4):223-33. [Link]
- Tuncer Hİ. Karma yemlerde kullanimi yasaklanan hormon, antibiyotik, antikoksidiyal ve ilaçlar [To banned usage of hormones, antibiotics, anticoccidials and drugs in compound animal feed]. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi. 2007;47(1):1-9. [Link]
- Cronje P. Heat stress in livestock-the role of the gut in its aetiology and a potential role for betaine in its alleviation. Recent Advances in Animal Nutrition in Australia. 2005;15:107-22. [Link]
- Kettunen H, Tiihonen K, Peuranen S, Saarinen MT, Remus JC. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(4):759-69. [Crossref] [PubMed]
- Hassan RA, Ebeid TA, Abd El-Lateif AI, Ismail NB. Effect of dietary betaine supplementation on growth, carcass and immunity of New Zealand White rabbits under high ambient temperature. Livestock Science. 2011;135(2-3):103-9. [Link]
- Peterson SE, Rezamand P, Williams JE, Price W, Chahine M, McGuire MA. Effects of dietary betaine on milk yield and milk composition of mid-lactation Holstein dairy cows. J Dairy Sci. 2012;95(11):6557-62. [Crossref] [PubMed]
- Gabler N, Frouel S, Awati A, Owusu-Asiedu A, Amerah A, Patridge G, et al. Betaine mitigates intestinal permeability in growing pigs induced by heat stress. In: Australasian Pig Science Association, Pluske JR, Pluske JM, eds. Manipulating Pig Production XIV: Proceedings of the Fourteenth Biennial Conference of the Australasian Pig Science Association (APSA), Melbourne, Australia, 24th-27th November, 2013. Australia: Australasian Pig Science Association, Werribbee, Vic.; 2013. p.24-7.
- Shakeri M, Cottrell JJ, Wilkinson S, Zhao W, Le HH, McQuade R, et al. Dietary Betaine Improves Intestinal Barrier Function and Ameliorates the Impact of Heat Stress in Multiple Vital Organs as Measured by Evans Blue Dye in Broiler Chickens. Animals (Basel). 2019;10(1):38. [Crossref] [PubMed] [PMC]
- Min Y, Ma X, Sankaran K, Ru Y, Chen L, Baiocchi M, et al. Sex-specific association between gut microbiome and fat distribution. Nat Commun. 2019;10(1):2408. [Crossref] [PubMed] [PMC]
- Kurihara M, Shioya S. Dairy cattle management in a hot environment. Food and Fertilizer Technology Center. 2003. [Link]
.: Process List