Kronik obstrüktif akciğer hastalığında kolinerjik sistemin aktivitesi artar, bu da solunum yolu düz kaslarını kasarak soluk alışverişini sınırlandırır. Bu nedenle kolinerjik sinir sistemi aktivitesinin arttığı kronik obstrüktif akciğer hastalığı gibi olguların tedavisinde, antikolinerjik ilaçlar kullanılmaktadır. Antikolinerjik ilaçların bu endikasyonda kullanımı, asetilkolinin bronkokonstriksiyon ve mukus salgısını artırıcı etkisinin azaltılmasına dayanmaktadır. Son yapılan deneysel çalışmalar, asetilkolinin yangıda da önemli rol oynadığını ortaya koymuştur. Muskarinik M3 reseptör-noksan fareler ve M3 selektif antagonistler kullanılarak yapılan çalışmalar, parankimal hücrelerdeki M3 reseptörlerinin asetilkolinin proinflamatuar etkisine aracılık ettiğini ortaya koymuştur. Beta-2 (β2) adrenerjik agonist ile muskarinik antagonist kombinasyonlarının kronik obstrüktif akciğer hastalığı tedavisinde kullanılması önerilmektedir. Bu öneri, β2 adrenerjik reseptör uyarımının M3 reseptörlerini antagonize ederek farklı bir yolakla inflamatuar hücrelerde inhibisyona yol açacağına dayanmaktadır ancak bu antiinflamatuar etkiler, kronik obstrüktif akciğer hastalığında açıkça ortaya konulamamıştır. Muskarinik reseptörler aracılığıyla, asetilkolinin proinflamatuar etkilerinin aksine parasempatik sinir sistemini içeren kolinerjik antiinflamatuar yol, doku hasarı ve enfeksiyon durumunda organları korumak için aşırı inflamatuar yanıtları düzenler. Diğer yandan asetilkolinin, α7 nikotinik asetilkolin reseptör aracılığıyla makrofajlar ve Tip 2 doğal lenfoid hücreler dâhil olmak üzere lökositler üzerinde inhibitör etki oluşturduğu ortaya konmuştur. Kronik obstrüktif akciğer hastalığında, asetilkolinin antiinflamatuar hücreler üzerindeki bu inhibe edici etkisi tam olarak ortaya konmasa da kolinerjik antiinflamatuar yolağı içeren nöroimmün etkileşimlerin terapötik bir hedef olabileceği belirtilmektedir.
Anahtar Kelimeler: Solunum sistemi hastalıkları; kolinerjik sinir sistemi
The activity of the cholinergic system increases in chronic obstructive pulmonary disease this restricts breathing exchange by contracting the airway smooth muscles. Therefore, anticholinergic drugs are used in the treatment of chronic obstructive pulmonary disease, which is increased cholinergic nervous system activity. The use of anticholinergic drugs in this indication is based on reducing the effect of acetylcholine on bronchoconstriction and mucus secretion. Recent experimental studies have shown that acetylcholine also plays an important role in inflammation. Studies with muscarinic M3 receptor-deficient mice and M3 selective antagonists have demonstrated that M3 receptors in parenchymal cells mediate the pro-inflammatory effect of acetylcholine. The combination of β2 adrenergic agonist and muscarinic antagonist is recommended in the treatment of chronic obstructive pulmonary disease. This recommendation is based on the fact that β2 adrenergic receptor stimulation will antagonize M3 receptors and leads to inhibition of inflammatory cells in a different way, but these anti-inflammatory effects have not been clearly demonstrated in chronic obstructive pulmonary disease. In contrast to the pro-inflammatory effects of acetylcholine through muscarinic receptors, the cholinergic anti-inflammatory pathway regulates excessive inflammatory responses to protect organs in case of tissue damage and infection. On the other hand, acetylcholine has been shown to have an inhibitory effect on leukocytes, macrophages and type 2 natural lymphoid cells through α7 nicotinic acetylcholine receptor. Although the inhibitory effect of acetylcholine on inflammatory cells in chronic obstructive pulmonary disease has not been fully established, it is stated that neuroimmune interactions involving cholinergic antiinflammatory pathway may be a therapeutic target.
Keywords: Respiratory system diseases; cholinergic nervous system
- Mak JC, Barnes PJ. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis. 1990;141(6):1559-68.[Crossref] [PubMed]
- Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, et al. Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology. 2004;145(5):2498-506.[Crossref] [PubMed]
- Kummer W, Krasteva-Christ G. Non-neuronal cholinergic airway epithelium biology. Curr Opin Pharmacol. 2014;16:43-9.[Crossref] [PubMed]
- Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558-71.[Crossref] [PubMed] [PMC]
- Profita M, Bonanno A, Siena L, Ferraro M, Montalbano AM, Pompeo F, et al. Acetylcholine mediates the release of IL-8 in human bronchial epithelial cells by a NFkB/ERK-dependent mechanism. Eur J Pharmacol. 2008;582(1-3):145-53.[Crossref] [PubMed]
- Gosens R, Rieks D, Meurs H, Ninaber DK, Rabe KF, Nanninga J, et al. Muscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells. Eur Respir J. 2009;34(6):1436-43.[Crossref] [PubMed]
- Gross NJ, Skorodin MS. Role of the parasympathetic system in airway obstruction due to emphysema. N Engl J Med. 1984;311(7):421-5.[Crossref] [PubMed]
- Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846-52.[Crossref] [PubMed]
- Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98-101.[Crossref] [PubMed] [PMC]
- Wu H, Li L, Su X. Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. Biomed Res Int. 2014;2014:283525.[Crossref] [PubMed] [PMC]
- Yang X, Zhao C, Gao Z, Su X. A novel regulator of lung inflammation and immunity: pulmonary parasympathetic inflammatory reflex. QJM. 2014;107(10):789-92.[Crossref] [PubMed]
- Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007;35(12):2762-8.[Crossref] [PubMed]
- Yang X, Zhao C, Chen X, Jiang L, Su X. Monocytes primed with GTS-21/α7 nAChR (nicotinic acetylcholine receptor) agonist develop anti-inflammatory memory. QJM. 2017;110(7):437-45.[Crossref] [PubMed]
- Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054-66.[Crossref] [PubMed]
- Wollin L, Pieper MP. Tiotropium bromide exerts anti-inflammatory activity in a cigarette smoke mouse model of COPD. Pulm Pharmacol Ther. 2010;23(4):345-54.[Crossref] [PubMed]
- Bucher H, Duechs MJ, Tilp C, Jung B, Erb KJ. Tiotropium attenuates virus-induced pulmonary inflammation in cigarette smoke-exposed mice. J Pharmacol Exp Ther. 2016;357(3):606-18.[Crossref] [PubMed] [PMC]
- Shen LL, Liu YN, Shen HJ, Wen C, Jia YL, Dong XW,et al. Inhalation of glycopyrronium inhibits cigarette smoke-induced acute lung inflammation in a murine model of COPD. Int Immunopharmacol. 2014;18(2):358-64.[Crossref] [PubMed]
- Hsiao YH, Tseng CM, Su KC, Chen WC, Wu MT, Wu YC, et al. Glycopyrronium bromide inhibits lung inflammation and small airway remodeling induced by subchronic cigarette smoke exposure in mice. Respir Physiol Neurobiol. 2018;249:16-22.[Crossref] [PubMed]
- Domínguez-Fandos D, Ferrer E, Puig-Pey R, Carre-o C, Prats N, Aparici M, et al. Effects of aclidinium bromide in a cigarette smoke-exposed Guinea pig model of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2014;50(2):337-46.[PubMed]
- Kistemaker LE, Bos IS, Hylkema MN, Nawijn MC, Hiemstra PS, Wess J, et al. Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. Eur Respir J. 2013;42(6):1677-88.[Crossref] [PubMed]
- Profita M, Bonanno A, Montalbano AM, Ferraro M, Siena L, Bruno A, et al. Cigarette smoke extract activates human bronchial epithelial cells affecting non-neuronal cholinergic system signalling in vitro. Life Sci. 2011;89(1-2):36-43.[Crossref] [PubMed]
- Anzalone G, Gagliardo R, Bucchieri F, Albano GD, Siena L, Montalbano AM, et al. IL-17A induces chromatin remodeling promoting IL-8 release in bronchial epithelial cells: Effect of Tiotropium. Life Sci. 2016;152:107-16.[Crossref] [PubMed]
- Costa L, Roth M, Miglino N, Keglowich L, Zhong J, Lardinois D, et al. Tiotropium sustains the anti-inflammatory action of olodaterol via the cyclic AMP pathway. Pulm Pharmacol Ther. 2014;27(1):29-37.[Crossref] [PubMed]
- Sato E, Koyama S, Okubo Y, Kubo K, Sekiguchi M. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity. Am J Physiol. 1998;274(6):L970-9.[Crossref] [PubMed]
- Bühling F, Lieder N, Kühlmann UC, Waldburg N, Welte T. Tiotropium suppresses acetylcholine-induced release of chemotactic mediators in vitro. Respir Med. 2007;101(11):2386-94.[Crossref] [PubMed]
- Koarai A, Traves SL, Fenwick PS, Brown SM, Chana KK, Russell RE, et al. Expression of muscarinic receptors by human macrophages. Eur Respir J. 2012;39(3):698-704.[Crossref] [PubMed]
- Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldà A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17(1):145.[Crossref] [PubMed] [PMC]
- Reinheimer T, Möhlig T, Zimmermann S, Höhle KD, Wessler I. Muscarinic control of histamine release from airways. Inhibitory M1-receptors in human bronchi but absence in rat trachea. Am J Respir Crit Care Med. 2000;162(2 Pt 1):534-8.[Crossref] [PubMed]
- Fujii YX, Tashiro A, Arimoto K, Fujigaya H, Moriwaki Y, Misawa H, et al. Diminished antigen-specific IgG1 and interleukin-6 production and acetylcholinesterase expression in combined M1 and M5 muscarinic acetylcholine receptor knockout mice. J Neuroimmunol. 2007;188(1-2):80-5.[Crossref] [PubMed]
- Kistemaker LE, van Os RP, Dethmers-Ausema A, Bos IS, Hylkema MN, van den Berge M, et al. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;308(1):L96-103.[Crossref] [PubMed] [PMC]
- Powrie DJ, Wilkinson TM, Donaldson GC, Jones P, Scrine K, Viel K, et al. Effect of tiotropium on sputum and serum inflammatory markers and exacerbations in COPD. Eur Respir J. 2007;30(3):472-8.[Crossref] [PubMed]
- Perng DW, Tao CW, Su KC, Tsai CC, Liu LY, Lee YC. Anti-inflammatory effects of salmeterol/fluticasone, tiotropium/fluticasone or tiotropium in COPD. Eur Respir J. 2009;33(4):778-84.[Crossref] [PubMed]
- Yamada M, Ichinose M. The cholinergic pathways in inflammation: a potential pharmacotherapeutic target for COPD. Front Pharmacol. 2018;9:1426.[Crossref] [PubMed] [PMC]
- Wedzicha JA, Decramer M, Ficker JH, Niewoehner DE, Sandström T, Taylor AF, et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med. 2013;1(3):199-209.[Crossref] [PubMed]
- Calverley PMA, Anzueto AR, Carter K, Grönke L, Hallmann C, Jenkins C, et al. Tiotropium and olodaterol in the prevention of chronic obstructive pulmonary disease exacerbations (DYNAGITO): a double-blind, randomised, parallel-group, active-controlled trial. Lancet Respir Med. 2018;6(5):337-44.[Crossref] [PubMed]
- Beeh KM, Korn S, Beier J, Jadayel D, Henley M, D'Andrea P, et al. Effect of QVA149 on lung volumes and exercise tolerance in COPD patients: the BRIGHT study. Respir Med. 2014;108(4):584-92.[Crossref] [PubMed]
- Vincken W, Aumann J, Chen H, Henley M, McBryan D, Goyal P. Efficacy and safety of coadministration of once-daily indacaterol and glycopyrronium versus indacaterol alone in COPD patients: the GLOW6 study. Int J Chron Obstruct Pulmon Dis. 2014;9:215-28.[Crossref] [PubMed] [PMC]
- Mahler DA, Decramer M, D'Urzo A, Worth H, White T, Alagappan VK, et al. Dual bronchodilation with QVA149 reduces patient-reported dyspnoea in COPD: the BLAZE study. Eur Respir J. 2014;43(6):1599-609.[Crossref] [PubMed]
- Buhl R, Maltais F, Abrahams R, Bjermer L, Derom E, Ferguson G, et al. Tiotropium and olodaterol fixed-dose combination versus mono-components in COPD (GOLD 2-4). Eur Respir J. 2015;45(4):969-79. Erratum in: Eur Respir J. 2015;45(6):1763.[Crossref] [PubMed] [PMC]
- Oba Y, Sarva ST, Dias S. Efficacy and safety of long-acting β-agonist/long-acting muscarinic antagonist combinations in COPD: a network meta-analysis. Thorax. 2016;71(1):15-25.[Crossref] [PubMed]
- Meyer T, Reitmeir P, Brand P, Herpich C, Sommerer K, Schulze A, et al. Effects of formoterol and tiotropium bromide on mucus clearance in patients with COPD. Respir Med. 2011;105(6):900-6.[Crossref] [PubMed]
- Tagaya E, Yagi O, Sato A, Arimura K, Takeyama K, Kondo M, et al. Effect of tiotropium on mucus hypersecretion and airway clearance in patients with COPD. Pulm Pharmacol Ther. 2016;39:81-4.[Crossref] [PubMed]
- Cazzola M, Calzetta L, Puxeddu E, Ora J, Facciolo F, Rogliani P, et al. Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells. Respir Res. 2016;17(1):70.[Crossref] [PubMed] [PMC]
- Albano GD, Bonanno A, Moscato M, Anzalone G, Di Sano C, Riccobono L, et al. Crosstalk between mAChRM3 and β2AR, via acetylcholine PI3/PKC/PBEP1/Raf-1 MEK1/2/ERK1/2 pathway activation, in human bronchial epithelial cells after long-term cigarette smoke exposure. Life Sci. 2018;192:99-109.[Crossref] [PubMed]
- Wex E, Kollak I, Duechs MJ, Naline E, Wollin L, Devillier P. The long-acting β2 -adrenoceptor agonist olodaterol attenuates pulmonary inflammation. Br J Pharmacol. 2015;172(14):3537-47.[Crossref] [PubMed] [PMC]
- Keränen T, Hömmö T, Hämäläinen M, Moilanen E, Korhonen R. Anti-inflammatory effects of β2-receptor agonists salbutamol and terbutaline are mediated by MKP-1. PLoS One. 2016;11(2):e0148144.[Crossref] [PubMed] [PMC]
- Keränen T, Hömmö T, Moilanen E, Korhonen R. β2-receptor agonists salbutamol and terbutaline attenuated cytokine production by suppressing ERK pathway through cAMP in macrophages. Cytokine. 2017;94:1-7.[Crossref] [PubMed]
- Xu ZP, Yang K, Xu GN, Zhu L, Hou LN, Zhang WH, et al. Role of M3 mAChR in in vivo and in vitro models of LPS-induced inflammatory response. Int Immunopharmacol. 2012;14(3):320-7.[Crossref] [PubMed]
- Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384-8.[Crossref] [PubMed]
- Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, et al. Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats. Am J Respir Cell Mol Biol. 2007;37(2):186-92.[Crossref] [PubMed] [PMC]
- Su X, Matthay MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J Immunol. 2010;184(1):401-10.[Crossref] [PubMed] [PMC]
- dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ. Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med. 2011;183(4):471-82.[Crossref] [PubMed]
- He Y, Ye ZQ, Li X, Zhu GS, Liu Y, Yao WF, et al. Alpha7 nicotinic acetylcholine receptor activation attenuated intestine-derived acute lung injury. J Surg Res. 2016;201(2):258-65.[Crossref] [PubMed]
- Ma P, Yu K, Yu J, Wang W, Ding Y, Chen C, et al. Effects of nicotine and vagus nerve in severe acute pancreatitis-associated lung injury in rats. Pancreas. 2016;45(4):552-60.[Crossref] [PubMed]
- Ge J, Tian J, Yang H, Hou L, Wang Z, He Z, et al. Alpha7 Nicotine acetylcholine receptor agonist PNU-282987 attenuates acute lung injury in a cardiopulmonary bypass model in rats. Shock. 2017;47(4):474-9.[Crossref] [PubMed]
- Zhao C, Yang X, Su EM, Huang Y, Li L, Matthay MA, et al. Signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells lessen E. coli and LPS-induced acute inflammatory injury. Cell Discov. 2017;3:17009.[Crossref] [PubMed] [PMC]
- Pinheiro NM, Santana FP, Almeida RR, Guerreiro M, Martins MA, Caperuto LC, et al. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB J. 2017;31(1):320-32.[Crossref] [PubMed]
- Wang J, Li R, Peng Z, Zhou W, Hu B, Rao X, et al. GTS-21 Reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock. 2019;51(3):389-400.[Crossref] [PubMed]
- Sun P, Li L, Zhao C, Pan M, Qian Z, Su X. Deficiency of α7 nicotinic acetylcholine receptor attenuates bleomycin-induced lung fibrosis in mice. Mol Med. 2017;23:34-9.[Crossref] [PubMed] [PMC]
- Vicary GW, Ritzenthaler JD, Panchabhai TS, Torres-González E, Roman J. Nicotine stimulates collagen type I expression in lung via α7 nicotinic acetylcholine receptors. Respir Res. 2017;18(1):115.[Crossref] [PubMed] [PMC]
- Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Nicotinic alpha 7 receptor expression and modulation of the lung epithelial response to lipopolysaccharide. PLoS One. 2017;12(4):e0175367.[Crossref] [PubMed] [PMC]
- Nastrucci C, Russo P. α7 nAChR in airway respiratory epithelial cells. Curr Drug Targets. 2012;13(5):666-70.[Crossref] [PubMed]
- Maouche K, Medjber K, Zahm JM, Delavoie F, Terryn C, Coraux C, et al. Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure. Proc Natl Acad Sci U S A. 2013;110(10):4099-104.[Crossref] [PubMed] [PMC]
- Chernyavsky AI, Shchepotin IB, Galitovkiy V, Grando SA. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer. 2015;15:152.[Crossref] [PubMed] [PMC]
- Schaal C, Chellappan S. Nicotine-mediated regulation of nicotinic acetylcholine receptors in non-small cell lung adenocarcinoma by E2F1 and STAT1 transcription factors. PLoS One. 2016;11(5):e0156451.[Crossref] [PubMed] [PMC]
- Schuller HM. Regulatory role of the α7nAChR in cancer. Curr Drug Targets. 2012;13(5):680-7.[Crossref] [PubMed]
- Schuller HM, Orloff M. Tobacco-specific carcinogenic nitrosamines. Ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol. 1998;55(9):1377-84.[Crossref] [PubMed]
- Bordas A, Cedillo JL, Arnalich F, Esteban-Rodriguez I, Guerra-Pastrián L, de Castro J, et al. Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers. Oncotarget. 2017;8(40):67878-90.[Crossref] [PubMed] [PMC]
- Russo P, Del Bufalo A, Milic M, Salinaro G, Fini M, Cesario A. Cholinergic receptors as target for cancer therapy in a systems medicine perspective. Curr Mol Med. 2014;14(9):1126-38.[Crossref] [PubMed]
- Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T, Bouchery T, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 2017;549(7671):277-81.[Crossref] [PubMed] [PMC]
- Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature. 2017;549(7671):282-6.[Crossref] [PubMed] [PMC]
- Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549(7672):351-6. Erratum in: Nature. 2017.[Crossref] [PubMed] [PMC]
- Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, Rankin LC, et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359(6379):1056-61.[Crossref] [PubMed]
- Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ, et al. Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol. 2014;50(3):637-46.[Crossref] [PubMed] [PMC]
- Cutz E, Perrin DG, Pan J, Haas EA, Krous HF. Pulmonary neuroendocrine cells and neuroepithelial bodies in sudden infant death syndrome: potential markers of airway chemoreceptor dysfunction. Pediatr Dev Pathol. 2007;10(2):106-16.[Crossref] [PubMed]
- Gillan JE, Cutz E. Abnormal pulmonary bombesin immunoreactive cells in Wilson-Mikity syndrome (pulmonary dysmaturity) and bronchopulmonary dysplasia. Pediatr Pathol. 1993;13(2):165-80.[Crossref] [PubMed]
- Young LR, Brody AS, Inge TH, Acton JD, Bokulic RE, Langston C, et al. Neuroendocrine cell distribution and frequency distinguish neuroendocrine cell hyperplasia of infancy from other pulmonary disorders. Chest. 2011;139(5):1060-71.[Crossref] [PubMed]
- van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378(9804):1741-55.[Crossref] [PubMed]
- Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360(6393):eaan8546.[Crossref] [PubMed] [PMC]
- Linnoila RI. Functional facets of the pulmonary neuroendocrine system. Lab Invest. 2006;86(5):425-44.[Crossref] [PubMed]
- Barrios J, Patel KR, Aven L, Achey R, Minns MS, Lee Y, et al. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. FASEB J. 2017;31(9):4117-28.[Crossref] [PubMed] [PMC]
- Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535(7612):440-3.[Crossref] [PubMed] [PMC]
.: Process List