Bu derlemenin amacı, rezidüel kuvvet gelişiminin altında yatan mekanizmaları araştırmaktır. Rezidüel kuvvet, aktif gerilmeyi takiben iskelet kaslarında sürekli olarak gözlenmiştir. Günümüze kadar hakkında birçok teorinin ortaya atıldığı rezidüel kuvvet, yarım yüzyılı aşkın bir süredir tartışılan ve mekanizması tam olarak anlaşılamamış bir konudur. Bu teoriler arasında, sarkomer uzunluğunun düzensizliği, titin ve çapraz köprü sayısı, genel kabul görmüş üç mekanizma sayılmaktadır. Sarkomer uzunluğunun düzensizliği, gerilmeden sonra kuvvet artışını açıklayan ilk mekanizmadır ve farklı sarkomer uzunluklarında kuvvetuzunluk ilişkisine bağlı olduğu düşünülmektedir. Gerilmeden sonra kuvvet artırmanın, kas içindeki pasif elastik elemanlarda meydana gelen gerginlikteki artışla da ilişkili olabileceği öne sürülmüştür. Bu fonksiyon için en muhtemel pasif eleman titindir. Araştırmacılar, kasın aktif olarak uzatılması durumunda, protein titininin kuvvet üretiminde anlamlı derecede ilişkili olduğunu belirtmişlerdir. Rezidüel kuvvet gelişimini açıklayan diğer bir hipotez ise çapraz köprü sayısındaki artıştır. Çapraz köprü sayısındaki artışla ilişkili birkaç olası mekanizma vardır. Mevcut çalışmalar, eksantrik kasılma sırasında oluşan rezidüel kuvvetteki artışın titinin kas aktivasyonu ile etkileşiminden kaynaklandığını göstermektedir. Sonuç olarak rezidüel kuvvet gelişiminin, sarkomer uzunluğunun düzensizliği, titin ve çapraz köprü sayısı ile ilişkili olduğu düşünülmektedir. Bununla birlikte, bu üç kabul edilmiş mekanizmanın birbiriyle bağlantılı olarak rezidüel kuvvet gelişimi ile ilişkili olduğunu bildiren çalışmalar da mevcuttur. Ayrıca yaş, kas yapısı ve kas hasarının da rezidüel kuvvet gelişimini etkilediği belirlenmiştir.
Anahtar Kelimeler: Rezidüel kuvvet; sarkomer; titin; çapraz köprü
The purpose of this review is to investigate the underlying mechanisms of residual force enhancement. The residual force has been observed consistently in skeletal muscles following active stretching and has been a matter of debate for more than half a century. Its mechanism has not been fully understood and there are many theories about it. Among these theories, the sarcomere length non-uniformities, the number of titin and cross bridges can be identified as three generally accepted mechanisms. The sarcomere length non-uniformities is the first mechanism to explain the increase in strength after stretching and is believed to depend on the strength-length relationship of different sarcomere lengths. It has been suggested that force enhancement after stretch may also be associate with an increase in tension in passive elastic elements in which muscle. The most likely passive element for this function is titin. Researchers have indicated that protein titin is significantly associated with the production of force in the case of active extension of the muscle. Another hypothesis to explain the residual force is the increase in the number of cross-bridges. Current studies indicate that the increase in residual force during eccentric contraction is due to the interaction of titin with muscle activation. As a result, residual force enhancement thought to be related to the sarcomere length non-uniformities, the number of titin and cross bridges. Moreover, age, muscle structure and muscle damage were also found to affect the residual force enhancement.
Keywords: Residual force; sarcomere; titin; cross bridges
- Seiberl W, Paternoster F, Achatz F, Schwirtz A, Hahn D. On the relevance of residual force enhancement for everyday human movement. J Biomech. 2013;46(12):1996-2001. [Crossref] [PubMed]
- Power GA, Makrakos DP, Rice CL, Vandervoort AA. Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture. Physiol Rep. 2013;1(1):e00004. [Crossref] [PubMed] [PMC]
- Siebert T, Kurch D, Blickhan R, Stutzig N. Does weightlifting increase residual force enhancement?. J Biomech. 2016;49(10):2047-52. [Crossref] [PubMed]
- Fortuna R, Power GA, Mende E, Seiberl W, Herzog W. Residual force enhancement following shortening is speed-dependent. Sci Rep. 2016;5:21513. [Crossref] [PubMed] [PMC]
- Johnston K, Jinha A, Herzog W. The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils. R Soc Open sci. 2016;3(3):150657. [Crossref] [PubMed] [PMC]
- Joumaa V, Fitzowich A, Herzog W. Energy cost of isometric force production after active shortening in skinned muscle fibres. J Exp Biol. 2017;220(8):1509-15. [Crossref] [PubMed]
- Herzog W, Leonard TR. Force enhancement following stretching of skeletal muscle: a new mechanism. J Exp Biol. 2002;205(9):1275-83. [PubMed]
- Power GA, Rice CL, Vandervoort AA. Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength. PLoS one. 2012;7(10):e48044. [Crossref] [PubMed] [PMC]
- Power GA, Rice CL, Vandervoort AA. Residual force enhancement following eccentric induced muscle damage. J Biomech. 2012;45(10):1835-41. [Crossref] [PubMed]
- Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377-84. [Crossref] [PubMed] [PMC]
- Fukutani A, Misaki J, Isaka T. Influence of joint angle on residual force enhancement in human plantar flexors. Front Physiol. 2017;8:234. [Crossref] [PubMed] [PMC]
- Tilp M, Steib S, Tilp GS, Herzog W. changes in fascicle lengths and pennation angles do not contribute to residual force enhancement/depression in voluntary contractions. J Appl Biomech. 2011;27(1):64-73. [Crossref] [PubMed]
- Fortuna R, Kirchhuebel H, Seiberl W, Power GA, Herzog W. Force depression following a stretch-shortening cycle is independent of stretch peak force and work performed during shortening. Scientific Reports. 2018;8:1534 [Crossref] [PubMed] [PMC]
- Shim J, Garner B. Residual force enhancement during voluntary contractions of knee extensors and flexors at short and long muscle lengths. J Biomech. 2012;45(6):913-8. [Crossref] [PubMed]
- Seiberl W, Power GA, Herzog W, Hahn D. The stretch‐shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis. Physiol Rep. 2015;3(5): e12401. [Crossref] [PubMed] [PMC]
- Sypkes CT, Kozlowski BJ, Grant J, Bent LR, McNeil CJ, Power GA. The influence of residual force enhancement on spinal and supraspinal excitability. Peer J. 2018;6:e5421. [Crossref] [PubMed] [PMC]
- Seiberl W, Hahn D, Herzog W, Schwirtz A. Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action. J Electromyogr Kinesiol. 2012;22(1):117-23. [Crossref] [PubMed]
- Paternoster FK, Seiberl W, Hahn D, Schwirtz A. Residual force enhancement during multi-joint leg extensions at joint-angle configurations close to natural human motion. J Biomech. 2016;49(5):773-9. [Crossref] [PubMed]
- Mazara N, Hess AJ, Chen J, Power GA. Activation reduction following an eccentric contraction impairs torque steadiness in the isometric steady-state. J Sport Health Sci. 2018;7(3):310-7. [Crossref] [PubMed] [PMC]
- Hahn D, Riedel TN. Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo. J Biomech. 2018;77:190-3. [Crossref] [PubMed]
- Fontana HdB, Campos Dd, Sakugawa RL. Predictors of residual force enhancement in voluntary contractions of elbow flexors. J Sport Health Sci. 2018;7(3):318-25. [Crossref] [PubMed] [PMC]
- Minozzo FC, Lira CABd. Muscle residual force enhancement: a brief review. Clinics. 2013;68(2):269-74. [Crossref] [PubMed]
- Rassier DE. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin. Proc Biol Sci 2012;279(1739):2705-13. [Crossref] [PubMed] [PMC]
- Campbell SG. Hatfield PC, Campbell KS. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement. PLoS computational biology. 2011;7(9):e1002156. [Crossref] [PubMed] [PMC]
- Morgan DL, Mochon S, Julian FJ. A quantitative model of intersarcomere dynamics during fixed-end contractions of single frog muscle fibers. Biophys J. 1982;39(2):189-96. [Crossref] [PubMed]
- Leonard TR, Herzog W. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol Cell Physiol. 2010;299(1):C14-20. [Crossref] [PubMed]
- Lindstedt SL, Reich TE, Keim P, LaStayo PC. Do muscles function as adaptable locomotor springs? J Exp Biol. 2002;205(15):2211-6. [PubMed]
- Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. Is titin a 'winding filament'? A new twist on muscle contraction. Proc Biol Sci. 2012;279(1730):981-90. [Crossref] [PubMed] [PMC]
- Siebert T, Rode C. Computational modeling of muscle biomechanics. In: Jin Z, ed. Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues. 1st ed. Woodhead Publishing series in biomaterials. Cambridge, UK: Woodhead Pub; 2014. p.173-204.
- Lehti M, Kivelä R, Komi P, Komulainen J, Kainulainen H, Kyrolainen H. Effects of fatiguing jumping exercise on mRNA expression of titin-complex proteins and calpains. J Appl Physiol. 2009;106(4):1419-24. [Crossref] [PubMed]
- McBride JM, Triplett-McBride T, Davie AJ, Abernethy PJ, Newton RU. Characteristics of titin in strength and power athletes. Eur J Appl Physiol. 2003;88(6):553-7. [Crossref] [PubMed]
- Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle nerve. 2007;36(6):740-55. [Crossref] [PubMed]
- Herzog W, Schappacher G, DuVall M, Leonard TR, Herzog JA. Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology (Bethesda). 2016;31(4):300-12. [Crossref] [PubMed]
- Herzog W, Lee EJ, Rassier DE. Residual force enhancement in skeletal muscle. J Physiol. 2006;574(3):635-42. [Crossref] [PubMed] [PMC]
- Seiberl W, Power GA, Hahn D. Residual force enhancement in humans: current evidence and unresolved issues. J Electromyogr Kinesiol. 2015;25(4):571-80. [Crossref] [PubMed]
- Knudson DV. The biomechanics of stretching. JESP. 2006;2:3-12.
- Sieck GC, Ferreira LF, Reid MB, Mantilla CB. Mechanical properties of respiratory muscles. Compr Physiol. 2013;3(4):1533-67. [Crossref] [PubMed] [PMC]
- Shalabi N, Cornachione A, Leite FdS, Vengallatore S, Rassier DE. Residual force enhancement is regulated by titin in skeletal and cardiac myofibrils. J Physiol. 2017;595(6):2085-98. [Crossref] [PubMed] [PMC]
- Tamura Y. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle. Comput Methods Biomech Biomed Engin. 2018;21(1):75-82. [Crossref] [PubMed]
- Kyröläinen H, Avela J, McBride JM, Koskinen S, Andersen JL, Sipilä S, et al. Effects of power training on muscle structure and neuromuscular performance. Scand J Med Sci Sports. 2005;15(1):58-64. [Crossref] [PubMed]
- Mcguigan MR, Sharman MJ, Newton RU, Davie AJ, Murphy AJ, Mcbride JM. Effect of explosive resistance training on titin and myosin heavy chain isoforms in trained subjects. J Strength Cond Res. 2003;17(4):645-51. [Crossref] [PubMed]
- Herzog W, Leonard TR. The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J Biomech. 2000;33(5):531-42. [Crossref] [PubMed]
- Lee HD, Herzog W, Leonard T. Effects of cyclic changes in muscle length on force production in in-situ cat soleus. J Biomech. 2001;34(8):979-87. [Crossref] [PubMed]
- Hahn D, Seiberl W, Schmidt S, Schweizer K, Schwirtz A. Evidence of residual force enhancement for multi-joint leg extension. J Biomech. 2010;43(8):1503-8. [Crossref] [PubMed]
- Worrell TW, Karst G, Adamczyk D, Moore R, Stanley C, Steimel B, Steimel S. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31(12):730-40. [Crossref] [PubMed]
- Seiberl W, Hahn D, Kreuzpointner F, Schwirtz A, Gastmann U. Force enhancement of quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes. J Appl Biomech. 2010;26(3):256-64. [Crossref] [PubMed]
- Tilp M, Steib S, Herzog W. Force-time history effects in voluntary contractions of human tibialis anterior. Eur J Appl Physiol. 2009;106(2):159-66. [Crossref] [PubMed]
- Joumaa V, Power GA, Hisey B, Caicedo A, Stutz J, Herzog W. Effects of fiber type on force depression after active shortening in skeletal muscle. J Biomech. 2015;48(10):1687-92. [Crossref] [PubMed]
- Corr DT, Herzog W. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors? J Biomech. 2016;49(5):726-34. [Crossref] [PubMed]
- Dargeviciute G, Masiulis N, Kamandulis S, Skurvydas A, Westerblad H. Residual force depression following muscle shortening is exaggerated by prior eccentric drop jump exercise. J Appl Physiol (1985). 2013;115(8):1191-5. [Crossref] [PubMed]
.: Process List