İntestinal mikrobiyota sindirim sistemi, deri, ürogenital sistem ve solunum sisteminde bulunan çeşitli mikroorganizmalardan oluşmaktadır. Probiyotik, prebiyotik ve bu 2 bileşenin kombinasyonundan oluşan sinbiyotikler mikrobiyota homeostazınının sağlanmasında önemli bir rol oynamaktadır. Postbiyotik kavramı ise probiyotik, prebiyotik ve sinbiyotiklere kıyasla son yıllarda gelişmekte olan yeni bir kavramdır. Probiyotik, bakterilerin metabolik aktiviteleri sonucunda postbiyotik adı verilen, suda çözünebilen ekzopolisakkarid, organik asit, kısa zincirli yağ asitleri, lipoteikoik asit, hücre yüzey proteinleri, vitamin ve bakteriyosin gibi metabolitler üretilmektedir. Postbiyotikler; termal işlem, yüksek basınç, ultraviyole ışın ve sonikasyon gibi çeşitli yöntemlerle Lactobacillus ve Bifidobacterium gibi probiyotik mikroorganizmaların inaktivasyonundan elde edilmektedir. Postbiyotikler, bakteriyosin üretimi ile bağırsak mikrobiyotası ve epitel bariyer fonksiyonunun düzenlenmesi, peptidoglikan, lipoteikoik asit ve ekzopolisakkarid gibi metabolitlerin üretimi ile immün hücre yanıtının modülasyonu, antibiyofilm özelliği ile patojenlere karşı inhibitör rol üstlenmesi gibi çeşitli özelliklere sahiptir. Bu özellikleri ile antienfektif, antibakteriyel ve antioksidan etki göstererek konakçı sağlığını olumlu yönde etkilemektedir. Ayrıca postbiyotiklerin proapoptotik hücrelerin ölüm yolaklarını aktive ederek kolorektal kanser üzerinde de olumlu etkilerinin olabileceğini gösteren çalışmalar bulunmaktadır. Konakçı sağlığı üzerindeki etkilerine ek olarak ekzopolisakkarid ve bakteriyosin gibi postbiyotik çeşitleri emülgatör, stabilizatör ve kıvam artırıcı özellikleri ile besin endüstrisinde sıkça kullanılmaktadır. Tüm bu özellikleri ile postbiyotikler sağlık üzerine etkileri açısından oldukça önemlidir. Bu derleme, postbiyotikler ve sağlık üzerine etkilerini incelemek amacıyla yazılmıştır.
Anahtar Kelimeler: Postbiyotik; probiyotik; mikrobiyota; sağlık
Intestinal microbiota consists of various microorganisms found in digestive system, skin, urogenital system and respiratory system. Synbiotics consisting of probiotics, prebiotics and the combination of these two components play an important role in maintaining microbiota homeostasis. The concept of postbiotics is a new concept that has been developing in recent years compared to probiotics, prebiotics and synbiotics. As a result of the metabolic activities of probiotic bacteria, metabolites such as water-soluble exopolysaccharide, organic acid, short-chain fatty acids, lipoteichoic acid, cell surface proteins, vitamins and bacteriocin are produced. Postbiotics are obtained from the inactivation of probiotic microorganisms such as Lactobacillus and Bifidobacterium by various methods such as thermal treatment, high pressure, ultraviolet light and sonication. Postbiotics have various features such as bacteriocin production and regulation of intestinal microbiota and epithelial barrier function, modulation of immune cell response with the production of metabolites such as peptidoglycan, lipoteichoic acid and exopolysaccharide, their antibiofilm feature and inhibitory role against pathogens. With these properties, it affects the host health positively by showing antiinfective, antibacterial and antioxidant effects. In addition, there are studies showing that postbiotics may have positive effects on colorectal cancer by activating the death pathways of proapoptotic cells. In addition to their effects on host health, postbiotic varieties such as exopolysaccharide and bacteriocin are frequently used in the food industry with their emulsifier, stabilizer and thickener properties. With all these features, postbiotics are important in terms of their effects on health. This review was written to examine postbiotics and their effects on health.
Keywords: Postbiotic; probiotic; microbiota; health
- Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet. 2012;13:151-70. [Crossref] [PubMed] [PMC]
- Malashree L, Angadi V, Yadav S, Prabha R. "Postbiotics"-One step ahead of probiotics. Int J Current Microbiol Appl Sci. 2019;8(1):2049-53. [Crossref]
- Aguilar-Toalá J, Garcia-Varela R, Garcia H, Mata-Haro V, González-Córdova A, Vallejo-Cordoba B, et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol. 2018;75:105-14. [Crossref]
- Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: Maternal health and the placental microbiome. Placenta. 2017;54:30-37. [Crossref] [PubMed]
- Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering. 2017;3(1):71-82. [Crossref]
- Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515-22. [Crossref] [PubMed]
- Belizário JE, Faintuch J. Microbiome and Gut Dysbiosis. Exp Suppl. 2018;109:459-476. [Crossref] [PubMed]
- Drago L, Valentina C, Fabio P. Gut microbiota, dysbiosis and colon lavage. Dig Liver Dis. 2019;51(9):1209-13. [Crossref] [PubMed]
- Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, et al; World Gastroenterology Organization. World Gastroenterology Organisation Global Guidelines: probiotics and prebiotics October 2011. J Clin Gastroenterol. 2012;46(6):468-81. [Crossref] [PubMed]
- Tsilingiri K, Rescigno M. Postbiotics: what else? Benef Microbes. 2013;4(1):101-7. [Crossref] [PubMed]
- Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T, Yoshikai Y. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol. 2003;10(2): 259- 66. [Crossref] [PubMed] [PMC]
- Klemashevich C, Wu C, Howsmon D, Alaniz RC, Lee K, Jayaraman A. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Curr Opin Biotechnol. 2014;26:85-90. [Crossref] [PubMed]
- Rautiola E. Short chain fatty acid production by probiotic organisms in the gastrointestinal tract. Senior Honors Theses. 2013:328. [Link]
- Kannampalli P, Shaker R, Sengupta JN. Colonic butyrate- algesic or analgesic? Neurogastroenterol Motil. 2011;23(11):975-9. [Crossref] [PubMed] [PMC]
- Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther. 2018;48(1):15-34. [Crossref] [PubMed]
- den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013; 305(12):G900-10. [Crossref] [PubMed]
- LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017;16(1):79. [Crossref] [PubMed] [PMC]
- Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95(1):50-60. [Crossref] [PubMed]
- Sun Y, O'Riordan MX. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol. 2013;85:93-118. [Crossref] [PubMed] [PMC]
- Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57(12):3126-35. [Crossref] [PubMed]
- van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev. 2017;75(4):286-305. [Crossref] [PubMed]
- Feng W, Ao H, Peng C. Gut microbiota, short-chain fatty acids, and herbal medicines. Front Pharmacol. 2018;9:1354. [Crossref] [PubMed] [PMC]
- Laws A, Gu Y, Marshall V. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv. 2001;19(8):597-625. [Crossref] [PubMed]
- Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20(19):4673. [Crossref] [PubMed] [PMC]
- Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci. 2012;13(11):14002-15. [Crossref] [PubMed] [PMC]
- Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Crit Rev Food Sci Nutr. 2016;56(9):1440-53. [Crossref] [PubMed]
- Brown S, Santa Maria JP Jr, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;67:313-36. [Crossref] [PubMed] [PMC]
- Lebeer S, Claes IJ, Vanderleyden J. Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol. 2012;20(1):5-10. [Crossref] [PubMed]
- Yi ZJ, Fu YR, Li M, Gao KS, Zhang XG. Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Exp Gerontol. 2009; 44(12):760-5. [Crossref] [PubMed]
- Kang SS, Sim JR, Yun CH, Han SH. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res. 2016;39(11): 1519-29. [Crossref] [PubMed]
- Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol. 2018;49:23-8. [Crossref] [PubMed] [PMC]
- Sun-Waterhouse D, Edmonds L, Wadhwa S, Wibisono R. Producing ice cream using a substantial amount of juice from kiwifruit with green, gold or red flesh. Food Res Int. 2013;50(2):647-56. [Crossref]
- Ross RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int J Food Microbiol. 2002;79(1-2):3-16. [Crossref] [PubMed]
- FAO W. Probiotics in food. Health and nutritional properties and guidelines for evaluation. 2006. [Link]
- And HC, Hoover DG. Bacteriocins and their food applications. Compr Rev Food Sci Food Saf. 2003;2(3):82-100. [Crossref] [PubMed]
- Jeevaratnam K, Jamuna M, Bawa A. Biological preservation of foods-Bacteriocins of lactic acid bacteria. Indian J Biotechnol. 2005;4(4): 446-54. [Link]
- Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol. 2016;7:1940. [Crossref] [PubMed] [PMC]
- de Almada CN, Almada CN, Martinez RC, Sant'Ana AS. Paraprobiotics: evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol. 2016;58:96-114. [Crossref]
- Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011;6(3):261-74. [Crossref] [PubMed] [PMC]
- Mosca F, Gianni ML, Rescigno M. Can postbiotics represent a new strategy for NEC? Adv Exp Med Biol. 2019;1125:37-45. [Crossref] [PubMed]
- Cicenia A, Scirocco A, Carabotti M, Pallotta L, Marignani M, Severi C. Postbiotic activities of lactobacilli-derived factors. J Clin Gastroenterol. 2014;48 Suppl 1:S18-22. [Crossref] [PubMed]
- Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology (Reading). 2010;156(Pt 6):1589-99. [Crossref] [PubMed] [PMC]
- Bermudez-Brito M, Plaza-Díaz J, Mu-oz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160-74. [Crossref] [PubMed]
- Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799-809. [Crossref] [PubMed]
- König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10): e196. [Crossref] [PubMed] [PMC]
- Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Front Microbiol. 2019; 10:477. [Crossref] [PubMed] [PMC]
- Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut. 2016;65(3): 415-25. [Crossref] [PubMed] [PMC]
- Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O'Connell Motherway M, Hill C, et al. Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol. 2018;49:217-23. [Crossref] [PubMed]
- Segers ME, Lebeer S. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb Cell Fact. 2014;13 Suppl 1(Suppl 1):S7. [Crossref] [PubMed] [PMC]
- Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol. 2010; 298(6):G851-9. [Crossref] [PubMed]
- Malagón-Rojas JN, Mantziari A, Salminen S, Szajewska H. Postbiotics for preventing and treating common ınfectious diseases in children: A systematic review. Nutrients. 2020; 12(2):389. [Crossref] [PubMed] [PMC]
- Kim KW, Kang SS, Woo SJ, Park OJ, Ahn KB, Song KD, et al. Lipoteichoic acid of probiotic lactobacillus plantarum attenuates poly I:C-Induced IL-8 Production in porcine ıntestinal epithelial cells. Front Microbiol. 2017;8:1827. [Crossref] [PubMed] [PMC]
- Ou CC, Lin SL, Tsai JJ, Lin MY. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J Food Sci. 2011;76(5): M260-7. [Crossref] [PubMed]
- Tsilingiri K, Barbosa T, Penna G, Caprioli F, Sonzogni A, Viale G, et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut. 2012;61(7):1007-15. [Crossref] [PubMed]
- Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220(10): 1161-9. [Crossref] [PubMed]
- Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247-52. [Crossref] [PubMed] [PMC]
- Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012; 135(3):1914-9. [Crossref] [PubMed]
- Xu R, Shang N, Li P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe. 2011;17(5):226-31. [Crossref] [PubMed]
- Sharma S, Singh RL, Kakkar P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol. 2011;49(4): 770-9. [Crossref] [PubMed]
- Braithwaite D, Demb J, Henderson L. American Cancer Society: Cancer Facts and Figures 2016. Atlanta, GA: American Cancer Society. [Link]
- Verma A, Shukla G. Modulation of apoptosis and immune response by symbiotic in experimental colorectal cancer. Int J Pharm Bio Sci. 2015;6(3):529-43. [Link]
- Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, et al. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells. PLoS One. 2016;11(2):e0147960. [Crossref] [PubMed] [PMC]
- Escamilla J, Lane MA, Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer. 2012;64(6):871-8. [Crossref] [PubMed]
- Lupton JR. Is fiber protective against colon cancer? Where the research is leading us. Nutrition. 2000;16(7-8):558-61. [Crossref] [PubMed]
- Hijova E, Chmelarova A. Short chain fatty acids and colonic health. Bratisl Lek Listy. 2007;108(8):354-8. [PubMed]
- Choe D, Foo H, Loh T, Hair-Bejo M, Awis Q. Inhibitory property of metabolite combinations produced from lactobacillus plantarum strains. Pertanika J Trop Agric Sci. 2013;36(1):79-88. [Link]
- Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol. 2014;63:133-9. [Crossref] [PubMed]
- Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med. 2019;19(1):114. [Crossref] [PubMed] [PMC]
- Han X, Yang Z, Jing X, Yu P, Zhang Y, Yi H, et al. Improvement of the Texture of Yogurt by Use of Exopolysaccharide Producing Lactic Acid Bacteria. Biomed Res Int. 2016;2016: 7945675. [Crossref] [PubMed] [PMC]
- Lluis-Arroyo D, Flores-Nájera A, Cruz-Guerrero A, Gallardo-Escamilla F, Lobato-Calleros C, Jiménez-Guzmán J, et al. Effect of an exopolysaccharide-producing strain of Streptococcus thermophilus on the yield and texture of Mexican Manchego-type cheese. Int J Food Prop. 2014;17(8):1680-93. [Crossref]
- Lynch KM, Zannini E, Coffey A, Arendt EK. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annu Rev Food Sci Technol. 2018;9:155-76. [Crossref] [PubMed]
- Rühmkorf C, Rübsam H, Becker T, Bork C, Voiges K, Mischnick P, et al. Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. Eur Food Res Technol. 2012;235(1):139-46. [Crossref]
- Martínez-Viedma P, Abriouel H, Omar NB, Valdivia E, López RL, Gálvez A. Inactivation of exopolysaccharide and 3-hydroxypropional dehyde-producing lactic acid bacteria in apple juice and apple cider by enterocin AS-48. Food Chem Toxicol. 2008;46(3):1143-51. [Crossref] [PubMed]
- Fraunhofer ME, Jakob F, Vogel RF. Influence of different sugars and initial pH on β-Glucan Formation by Lactobacillus brevis TMW 1.2112. Curr Microbiol. 2018;75(7):794-802. [Crossref] [PubMed]
.: Process List