Polikistik over sendromu (PKOS) üreme çağındaki kadınlarda yaygın görülen kısırlık ve gebelik komplikasyonları gibi önemli üreme bozukluklarına neden olan aynı zamanda insülin direnci, diyabet ve obezite gibi metabolik bozukluklar ve psikolojik sorunların eşlik ettiği heterojen bir hastalıktır. Hormonal dengesizlik, insülin direnci, obezite, inflamasyon ve genetik faktörler PKOS'un en önemli nedenleridir. PKOS'un nedenleri ve sonuçları arasında birbirini tetikleyen bir kısır döngü söz konusudur. Genetik faktörler, bu yaygın endokrin bozukluğun gelişiminde önemli rol oynar. Son zamanlarda PKOS'un etiyopatogenezinin araştırılmasında özellikle gen mutasyonları ve polimorfizmlerin etkisine odaklanılmıştır. Genetik özelliklerin belirlenmesiyle erken teşhis ve hedefe yönelik tedavilerin yapılması PKOS'un uzun vadeli komplikasyonlarının da azaltılmasına önemli bir katkı sağlayacaktır. PKOS'ta, sürekli gonadotropin ve beta adrenerjik reseptör (βAR) uyarımı nedeniyle yumurtalıklarda steroid üretimi artar. Ayrıca obezitede artan sempatik aktivite, adipoz dokuda katekolamin direnci ve β3-AR duyarsızlaşmasına neden olmaktadır. β3-AR duyarsızlaşması lipolizi azaltır ve yağ depolarını artırarak obezite ve inflamasyon gelişimine zemin hazırlamaktadır. Bu durum PKOS'ta görülen neden ve sonuçlar arasındaki kısır döngüye katkı sağlar. Glukoz, lipid, enerji metabolizması ve insülin direncinde önemli rolleri olan β3-AR'ye ait Trp64Arg gen polimorfizmi, β3-AR'nin fonksiyonlarını azaltır. Daha önce Trp64Arg polimorfizmi insülin direnci, diyabet, enerji metabolizmasının bozulması, kilo alımı, infertilite ve kan lipid düzeylerinde artış ile ilişkilendirilmiştir. Trp64Arg polimorfizminin PKOS için kötü prognozla ilişkili olabileceği düşünülmektedir. Bu derlemenin amacı, PKOS'lu kadınlarda β3-AR'nin Trp64Arg gen polimorfizminin rolünü belirlemeye yönelik literatür bilgileri sunmaktır.
Anahtar Kelimeler: Polikistik over sendromu; beta-3 adrenerjik reseptörler; Trp64Arg polimorfizmi; insülin direnci
Polycystic ovary syndrome (PCOS) is a heterogeneous disease that causes significant reproductive disorders such as infertility and pregnancy complications, which are common in women of reproductive age and are accompanied by metabolic disorders and psychological problems such as insulin resistance, diabetes, and obesity. Hormonal imbalances, insulin resistance, obesity, inflammation, and genetic factors are the most important causes of PCOS. There is a vicious circle between the causes and consequences of PCOS. Genetic factors play important roles in the development of this common endocrine disorder. Recently, research on the etiopathogenesis of PCOS has focused on the effects of genetic mutations and polymorphisms. Early diagnosis and targeted treatment by determining genetic characteristics will significantly contribute to reducing the long-term complications of PCOS. In PCOS, steroid production increases in the ovaries owing to continuous gonadotropin and beta-adrenergic receptor (β-AR) stimulation. In addition, increased sympathetic activity in obesity causes catecholamine resistance and β3-AR desensitization in the adipose tissue. β3-AR desensitization reduces lipolysis and increases fat stores, paving the way for the development of obesity and inflammation. This contributes to the vicious circle between the causes and effects of PCOS. The Trp64Arg gene polymorphism of β3-AR, which plays important roles in glucose and lipid metabolism, energy metabolism, and insulin resistance, reduces the function of β3-AR. The Trp64Arg polymorphism is associated with insulin resistance, diabetes, impaired energy metabolism, weight gain, infertility, and increased blood lipid levels. It is thought that the Trp64Arg polymorphism may be associated with poor prognosis in PCOS. This review aimed to provide literature information to determine the role of the Trp64Arg gene polymorphism in β3-AR in women with PCOS.
Keywords: Polycystic ovary syndrome; beta-3 adrenergic receptors; Trp64Arg polymorphism; insulin resistance
- Kabel AM. Polycystic ovarian syndrome: insights into pathogenesis, diagnosis, prognosis, pharmacological and non-pharmacological treatment. Pharm Bioprocess. 2016;4(1):7-12. [Link]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19-25. [Crossref] [PubMed]
- Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6-15. [Crossref] [PubMed]
- Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83(9):3078-82. [Crossref] [PubMed]
- Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-84. [Crossref] [PubMed]
- Hoeger KM, Dokras A, Piltonen T. Update on PCOS: consequences, challenges, and guiding treatment. J Clin Endocrinol Metab. 2021;106(3):e1071-e83. [Crossref] [PubMed]
- Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36(5):487-525. [Crossref] [PubMed] [PMC]
- Burger HG. Androgen production in women. Fertil Steril. 2002;77 Suppl 4:S3-5. [Crossref] [PubMed]
- Rosenfield RL. Ovarian and adrenal function in polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1999;28(2):265-93. [Crossref] [PubMed]
- Dumesic DA, Padmanabhan V, Abbott DH. Polycystic ovary syndrome and oocyte developmental competence. Obstet Gynecol Surv. 2008;63(1):39-48. [Crossref] [PubMed] [PMC]
- Ferriman D, Gallwey JD. Clinical assessment of body hair growth in women. J Clin Endocrinol Metab. 1961;21:1440-7. [Crossref] [PubMed]
- Wild RA. Long-term health consequences of PCOS. Hum Reprod Update. 2002;8(3):231-41. [Crossref] [PubMed]
- Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. [Crossref] [PubMed]
- Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes. 2014;5(2):128-40. [Crossref] [PubMed] [PMC]
- Al Wattar BH, Fisher M, Bevington L, Talaulikar V, Davies M, Conway G, et al. Clinical practice guidelines on the diagnosis and management of polycystic ovary syndrome: a systematic review and quality assessment study. J Clin Endocrinol Metab. 2021;106(8):2436-46. [Crossref] [PubMed] [PMC]
- Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Hum Reprod. 2008;23(3):462-77. Erratum in: Hum Reprod. 2008;23(6):1474. [Crossref] [PubMed]
- National Institutes of Health. Evidence-based methodology workshop on polycystic ovary syndrome, December 3-5, 2012. Available: [Link]
- Pasquali R, Pelusi C, Genghini S, Cacciari M, Gambineri A. Obesity and reproductive disorders in women. Hum Reprod Update. 2003;9(4):359-72. [Crossref] [PubMed]
- Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(6):673-83. [Crossref] [PubMed]
- Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2002;26(7):883-96. [Crossref] [PubMed]
- Ehrmann DA. Obesity and glucose intolerance in androgen excess. In: Azziz R, Nestler JE, Dewailly D, eds. Androgen Excess Disorders in Women. 1st ed. Philadelphia: Lippincott-Raven; 1997. p.705-12.
- Reaven GM. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr. 2005;25:391-406. [Crossref] [PubMed]
- Imani B, Eijkemans MJ, te Velde ER, Habbema JD, Fauser BC. A nomogram to predict the probability of live birth after clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility. Fertil Steril. 2002;77(1):91-7. [Crossref] [PubMed]
- Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, et al; Cooperative Multicenter Reproductive Medicine Network. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356(6):551-66. [Crossref] [PubMed]
- Hugues JN, Cédrin-Durnerin I, Howles CM; FSH OI Study Group; Amram M, Angelini A, Balen A, Barbereau D, Birkhauser M, Boujenah A, et al. The use of a decremental dose regimen in patients treated with a chronic low-dose step-up protocol for WHO Group II anovulation: a prospective randomized multicentre study. Hum Reprod. 2006;21(11):2817-22. [Crossref] [PubMed]
- Balen A. Surgical treatment of polycystic ovary syndrome. Best Pract Res Clin Endocrinol Metab. 2006;20(2):271-80. [Crossref] [PubMed]
- Urman B, Fluker MR, Yuen BH, Fleige-Zahradka BG, Zouves CG, Moon YS. The outcome of in vitro fertilization and embryo transfer in women with polycystic ovary syndrome failing to conceive after ovulation induction with exogenous gonadotropins. Fertil Steril. 1992;57(6):1269-73. [Crossref] [PubMed]
- Hiam D, Moreno-Asso A, Teede HJ, Laven JSE, Stepto NK, Moran LJ, et al. The genetics of polycystic ovary syndrome: an overview of candidate gene systematic reviews and genome-wide association studies. J Clin Med. 2019;8(10):1606. [Crossref] [PubMed] [PMC]
- Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12:249-60. [Crossref] [PubMed] [PMC]
- Lansdown A, Rees DA. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target? Clin Endocrinol (Oxf). 2012;77(6):791-801. [Crossref] [PubMed]
- Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106(20):2533-6. [Crossref] [PubMed]
- Grassi G, Dell'Oro R, Facchini A, Quarti Trevano F, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22(12):2363-9. [Crossref] [PubMed]
- Song Y, Altarejos J, Goodarzi MO, Inoue H, Guo X, Berdeaux R, et al. CRTC3 links catecholamine signalling to energy balance. Nature. 2010;468(7326):933-9. [Crossref] [PubMed] [PMC]
- Flaa A, Aksnes TA, Kjeldsen SE, Eide I, Rostrup M. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolism. 2008;57(10):1422-7. [Crossref] [PubMed]
- Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474-80. [Crossref] [PubMed]
- Barria A, Leyton V, Ojeda SR, Lara HE. Ovarian steroidal response to gonadotropins and beta-adrenergic stimulation is enhanced in polycystic ovary syndrome: role of sympathetic innervation. Endocrinology. 1993;133(6):2696-703. [Crossref] [PubMed]
- Schlaich MP, Straznicky N, Grima M, Ika-Sari C, Dawood T, Mahfoud F, et al. Renal denervation: a potential new treatment modality for polycystic ovary syndrome? J Hypertens. 2011;29(5):991-6. [Crossref] [PubMed]
- Heider U, Pedal I, Spanel-Borowski K. Increase in nerve fibers and loss of mast cells in polycystic and postmenopausal ovaries. Fertil Steril. 2001;75(6):1141-7. [Crossref] [PubMed]
- Aurbach GD, Spiegel AM, Gardner JD. Beta-adrenergic receptors, cyclic AMP, and ion transport in the avian erythrocyte. Adv Cyclic Nucleotide Res. 1975;5:117-32. [PubMed]
- Emorine LJ, Feve B, Pairault J, Briend-Sutren MM, Marullo S, Delavier-Klutchko C, et al. Structural basis for functional diversity of beta 1-, beta 2- and beta 3-adrenergic receptors. Biochem Pharmacol. 1991;41(6-7):853-9. [Crossref] [PubMed]
- Fève B, Elhadri K, Quignard-Boulangé A, Pairault J. Transcriptional down-regulation by insulin of the beta 3-adrenergic receptor expression in 3T3-F442A adipocytes: a mechanism for repressing the cAMP signaling pathway. Proc Natl Acad Sci U S A. 1994;91(12):5677-81. [Crossref] [PubMed] [PMC]
- Hadri KE, Charon C, Pairault J, Hauguel-De Mouzon S, Quignard-Boulangé A, Fève B. Down-regulation of beta3-adrenergic receptor expression in rat adipose tissue during the fasted/fed transition: evidence for a role of insulin. Biochem J. 1997;323 ( Pt 2)(Pt 2):359-64. [Crossref] [PubMed] [PMC]
- Coman OA, Păunescu H, Ghiţă I, Coman L, Bădărăru A, Fulga I. Beta 3 adrenergic receptors: molecular, histological, functional and pharmacological approaches. Rom J Morphol Embryol. 2009;50(2):169-79. [PubMed]
- Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, et al. Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem. 1995;270(49):29483-92. [Crossref] [PubMed]
- Valentine JM, Ahmadian M, Keinan O, Abu-Odeh M, Zhao P, Zhou X, et al. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest. 2022;132(2):e153357. [Crossref] [PubMed] [PMC]
- Goldberg M, Gordon ES. Energy metabolism in human obesity. plasma free fatty acid, glucose, and glycerol response to epinephrine. JAMA. 1964;189:616-23. [Crossref] [PubMed]
- Lönnqvist F, Thörne A, Large V, Arner P. Sex differences in visceral fat lipolysis and metabolic complications of obesity. Arterioscler Thromb Vasc Biol. 1997;17(7):1472-80. [Crossref] [PubMed]
- Arner P, Hoffstedt J. Adrenoceptor genes in human obesity. J Intern Med. 1999;245(6):667-72. [Crossref] [PubMed]
- Masuo K, Katsuya T, Fu Y, Rakugi H, Ogihara T, Tuck ML. Beta2-adrenoceptor polymorphisms relate to insulin resistance and sympathetic overactivity as early markers of metabolic disease in nonobese, normotensive individuals. Am J Hypertens. 2005;18(7):1009-14. [Crossref] [PubMed]
- Widén E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med. 1995;333(6):348-51. [Crossref] [PubMed]
- Kurabayashi T, Carey DG, Morrison NA. The beta 3-adrenergic receptor gene Trp64Arg mutation is overrepresented in obese women. Effects on weight, BMI, abdominal fat, blood pressure, and reproductive history in an elderly Australian population. Diabetes. 1996;45(10):1358-63. [Crossref] [PubMed]
- Thomas GN, Tomlinson B, Chan JC, Young RP, Critchley JA. The Trp64Arg polymorphism of the beta3-adrenergic receptor gene and obesity in Chinese subjects with components of the metabolic syndrome. Int J Obes Relat Metab Disord. 2000;24(5):545-51. [Crossref] [PubMed]
- Luo Z, Zhang T, Wang S, He Y, Ye Q, Cao W. The Trp64Arg polymorphism in β3 adrenergic receptor (ADRB3) gene is associated with adipokines and plasma lipids: a systematic review, meta-analysis, and meta-regression. Lipids Health Dis. 2020;19(1):99. [Crossref] [PubMed] [PMC]
- Mitchell BD, Blangero J, Comuzzie AG, Almasy LA, Shuldiner AR, Silver K, et al. A paired sibling analysis of the beta-3 adrenergic receptor and obesity in Mexican Americans. J Clin Invest. 1998;101(3):584-7. [Crossref] [PubMed] [PMC]
- Malik SG, Saraswati MR, Suastika K, Trimarsanto H, Oktavianthi S, Sudoyo H. Association of beta3-adrenergic receptor (ADRB3) Trp64Arg gene polymorphism with obesity and metabolic syndrome in the Balinese: a pilot study. BMC Res Notes. 2011;4:167. [Crossref] [PubMed] [PMC]
- Liu J, Zhang B, Li M, Li C, Liu Y, Wang Z, et al. [Study on relationship between Trp64Arg polymorphism of β3-adrenergic receptor gene and obesity and blood lipids]. Zhonghua Yi Xue Za Zhi. 2015;95(20):1558-62. Chinese. [PubMed]
- Kurokawa N, Young EH, Oka Y, Satoh H, Wareham NJ, Sandhu MS, et al. The ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44 833 individuals. Int J Obes (Lond). 2008;32(8):1240-9. [Crossref] [PubMed]
- Wang HD, Zhang CS, Li MW, Lin Q, Zhang Q, Liu DF, et al. The Association of Trp64Arg polymorphism in the beta-adrenergic receptor with insulin resistance: meta-analysis. Front Endocrinol (Lausanne). 2021;12:708139. [Crossref] [PubMed] [PMC]
- Kurabayashi T, Yahata T, Quan J, Tanaka K. Association of polymorphisms in the beta2 and beta3 adrenoceptor gene with polycystic ovary syndrome. J Reprod Med. 2006;51(5):389-93. [PubMed]
- Zangeneh FZ, Shoushtari MS, Shojaee S, Aboutorabi E. Investigation Trp64Arg polymorphism of the beta 3-adrenergic receptor gene in nonobese women with polycystic ovarian syndrome. Int J Reprod Biomed. 2020;18(3):165-74. [PubMed] [PMC]
- Pérez-Bravo F, Echiburú B, Maliqueo M, Santos JL, Sir-Petermann T. Tryptophan 64 --> arginine polymorphism of beta-3-adrenergic receptor in Chilean women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 2005;62(2):126-31. [Crossref] [PubMed]
- Abeer M, Samah AG. Polymorphism of beta 3-adrenergic receptor gene and glycogen synthetase gene in polycystic ovary syndrome. MJCU. 2007;75(4):243-7 Available: [Link]
- Witchel SF, Fagerli J, Siegel J, Smith R, Mitwally MF, Lewy V, et al. No association between body mass index and beta(3)-adrenergic receptor variant (W64R) in children with premature pubarche and adolescent girls with hyperandrogenism. Fertil Steril. 2000;73(3):509-15. [Crossref] [PubMed]
.: Process List