Son yıllarda, ilaç kullanımının artmasıyla günde 1'den fazla dozlama yapılan tedavilerde hasta uyuncunu ve tedavinin başarısını artırarak, farmakoekonomiye de katkı sağlayan kontrollü salım sistemleriyle ilgili çalışmalar artış göstermiştir. Kontrollü salım sistemlerinden biri olan ozmotik basınçlı sistemler, diğer kontrollü salım sistemleri arasında avantajları ve sağladığı kolaylıklarla ilgi çekmektedir. Bunlarda itici güç olarak kullanılan ozmotik basınç, sistemi diğerlerinden ayıran en büyük faktördür. Bunun sayesinde sistemin 0. dereceden salım yapabilmesi sağlanabilmekte, böylece kan konsantrasyonlarındaki dalgalanma en aza indirgenebilmektedir. Sıfırıncı derece salım reaksiyonlarında görülen konsantrasyondan bağımsız salım, absorbsiyon bölgesinde tek tip ilaç konsantrasyonu elde ettiği ve ilacın terapötik pencere aralığında kalmasını sağladığı için dozlama aralığı da uzatılmış olur. Dolayısıyla hem ilacın yan etkilerinin görülmesi olasılığı azaltılmış hem de hasta uyuncu artırılmış olduğundan, hastanın sosyal yaşamına büyük kolaylıklar getirme imkânı sağlar. Bu sistemlerin, her ne kadar bazı avantajları olduğu gibi bazı dezavantajları da olmasına rağmen ilacı önceden ayarlanmış bir salım mekanizmasıyla salarak, hedeflenen tedavi rejimine ulaşmayı kolaylaştırması tedavideki başarı oranını artırabilmektedir. Bu derlemede, ozmotik basınçlı salım sistemlerinin genel yapısından, tasarımlarını etkileyen faktörlerden, dağıtım deliği oluşturma yöntemlerinden, ozmotik basınçlı sistemlerin tarihçesinden, ozmotik pompa tiplerinden, her birinin çalışma prensiplerinden, patentli ozmotik pompalardan, bu sistemlerin ilaç salım kinetiğinden, bunlarda kullanılan maddeler ve oluşturdukları basınç miktarlarından, ayrıca bu sistemlerin avantajları ve dezavantajları ile sistemi kısıtlayan basamaklardan bahsedilmiştir.
Anahtar Kelimeler: Ozmotik ilaç dağıtım sistemleri; gecikmeli hazırlıklar; ozmotik basınç
With the increasing use of medication in recent years, studies on controlled release systems that have contributed to pharmacoeconomics have escalated by increasing patient compliance and the success of therapy in treatments with more than one dose per day. Osmotic delivery systems, one of the controlled release systems, draw attention with its advantages and conveniences among other controlled release systems. Osmotic pressure used as the driving force in this system is the biggest factor that separates the system from the others. Thanks to this, the system has zero order release kinetic so that fluctuations in blood concentrations can be minimized. The dosing interval is extended as the release independent of the concentration and so achieves unvarying drug concentration in the absorption zone and ensures that the drug remains within the therapeutic window range. Therefore, since the possibility of seeing side effects of the drug is reduced and patient compliance is increased, the possibility of bringing great convenience to the patient's social life arises. Although these systems have some disadvantages, it can increase the success ratio of the treatment by releasing the drug with a preset release mechanism and making it easier to reach the targeted treatment regimen. In this review, the general structures, factors affecting their designs, orifice forming methods, history of these, osmotic pump types, operating principles, patented osmotic pumps, drug release kinetics, the substances used in them and the amount of pressure they create and, the advantages and disadvantages, and the steps that restrict the system are mentioned.
Keywords: Osmotic drug delivery systems; delayed-action preparations; osmotic pressure
- Hill A, Geissler S, Meyring M, Hecht S, Weigandt M, Mäder K. In vitro-in vivo evaluation of nanosuspension release from subcutaneously implantable osmotic pumps. Int J Pharm. 2013;15;451(1-2):57-66. [Crossref] [PubMed]
- Sahoo CK, Sahoo NK, Rao SRM, Sudhakar M, Satyanarayana K. A rewiew on controlled porosity osmotic pump tablets and its evaluation. Bulletin of Faculty of Pharmacy Cairo University. 2015;53(2):195-205. [Crossref]
- Kaur G, Grewal J, Jyoti K, Jain UK, Chandra R, Madan J. Oral controlled and sustained drug delivery systems. In: Grumezescu AA, ed. Drug Targeting and Stimule Sensitive Drug Delivery Systems. 1st ed. Romania: Elsevier Inc; 2018. p.567-626. [Crossref]
- Ordu Ş, Kaynar-Özdemir N. Osmotik pompalar: çalışma prensipleri ve dizayn parametreleri. [Osmotic pumps: principles of working mechanism and design parameters]. Pharmacia-JTPA. 1989;29(63)(1,2,3):65-73. [Link]
- Keraliya RA, Patel C, Patel P, Keraliya V, Soni TG, Patel RC, et al. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm. 2012;2012:528079. [Crossref] [PubMed] [PMC]
- Santus G, Baker RW. Osmotic drug delivery: a review of the patent literature. J Control Release. 1995;35(1):1-21. [Crossref]
- Theewes F, Eckenhoff B. Applications of osmotic drug delivery. In: Baker R, ed. Controlled Release of Bioactive Materials. 1st ed. New York: Academic Press; 1980. p.61-82. [Link]
- Fane AGT, Wong R, Jia Y. Membran technology: past, present and future. In: Wang LK, Chen JP, Hung YT, Shammas NK, eds. Membran and Desalination Technologies. 1st ed. New York: Springer Science and Business Media; 2011. p.6. [Crossref] [PubMed]
- Rose S, Nelson JF. A continuous long-term injector. Aust J Exp Biol Med Sci. 1955;33(4):415-9. [Crossref] [PubMed]
- Parmar NS, Vyas SK, Voya N. Osmotic pump-A novel drug delivery system. In: Jain NK, ed. Advances in Controlled and Novel Drug Delivery. 1st ed. New Delhi: CBS Publisher&Distributer; 2011 p.20. [Link]
- Theeuwes F, Barclay B, Cortese R. Osmotic device for dispensing two different medications. United States patent US4455143. 1984 Jun 19. [Link]
- Prasoon P, Ramya Devi D, Vedha Hari BN. Push-Pull Osmotic Tablets-An Overview with Its Commercial Significance. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014;5(3):12-25. [Link]
- Cortese R, Theeuwes F. Osmotic device with hydrogel driving member. United States patent US4327725. 1982 May 4. [Link]
- Ghosh T, Ghosh A. Drug delivery through osmotic systems-an overview. J Applied Pharm Sci. 2011;1(2):38-49. [Link]
- Cortese R, Barclay B, Theeuwes F. Simultaneous delivery of two drugs from unit delivery device. United States patent US4449983. 1984 May 22. [Link]
- Zentner GM, McClelland GA, Sutton SC. Controlled porosity solubility and resin modulated osmotic drug delivery systems for release of diltiazem hydrochloride. J Control Release. 1991;16(1-2):237-43. [Link]
- Patel KN, Mehta TA. A rewiew on oral osmotically driven systems. Int J Pharm Pharm Sci. 2013;5(3):996-1004. [Link]
- Gupta S, Singh RP, Sharma R, Kalyanwat R, Lokwani P. Osmotic pumps: a review. Pharmacie Globale (IJCP). 2011;6(1):1-8. [Link]
- Syed SM, Farooqui Z, Mohammed M, Dureshahwar K, Farooqui M. Osmotic drug delivery system: an overview. Int J Pharm Res & Allied Sci. 2015;4(3):10-20. [Link]
- Ahuja N, Kumar V, Rathee P. Osmotic-controlled release oral delivery system: an advanced oral delivery form. The Pharma Innov. 2012;1(7):116-24. [Link]
- Gupta BP, Thakur N, Jain NP, Banweer J, Jain S. Osmotically controlled drug delivery system with associated drugs. J Pharm Pharm Sci. 2010;13(4):571-88. [Crossref] [PubMed]
- Verma RK, Mishra B, Garg S. Osmotically controlled oral drug delivery. Drug Dev Ind Pharm. 2000;26(7):695-708. [Crossref] [PubMed]
- Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release. 2002;19;79(1-3):7-27. [Crossref] [PubMed]
- Higuchi T. Osmotic dispenser with collapsible supply container. United States patent US3760805. 1973 Sept 25. [Link]
- Higuchi T, Leeper H. Osmotic disperser. United States patent US3732865. 1973 May 15. [Link]
- Higuchi T, Leeper HM. Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient. United States patent US3995631. 1976 Dec 7. [Link]
- Theeuwes F, Yum SI. Principles of the design and operation of generic osmotic pumps for delivery semisolid or liquid drug formulations. Annals Biomed Eng. 1976;4(4):343-53. [Link]
- Theeuwes F. Osmotic system for delivering selected beneficial agents having varying degress of solubility. United States patent US4111201. 1978 Sep 5. [Link]
- Ouyang D, Nie S, Li W, Guo H, Liu H, Pan W. Design and evaluation of compound metformin/glipizide elementary osmotic pump tablets. J Pharm Pharmacol. 2005;57(7):817-20. [Crossref] [PubMed]
- Theeuwes F. Elementary osmotic pump. J Pharm Sci. 1975;64(12):1987-91. [Crossref] [PubMed]
- Shokri J, Ahmadi P, Rashidi P, Shahsavari M, Rajabi-Siahboomi A, Nokhodchi A. Swellable elementary osmotic pump (SEOP): an effective device for delivery of poorly water-soluble drugs. Eur J Pharm Biopharm. 2008;68(2):289-97. [Crossref] [PubMed]
- Jerzewski RL, Chien YW. Osmotic drug delivery. In: Kydonieus A, ed. Treatise on Controlled Drug Delivery: Fundamentals, Optimization, Application. 1st ed. New York: Marcel Dekker; 1992. p.225-53. [Crossref]
- Prabakaran D, Singh P, Kanaujia P, Jaganathan KS, Rawat A, Vyas SP. Modified push-pull osmotic system for simultaneous delivery of theophylline and salbutamol: development and in vitro characterization. Int J Pharm. 2004;13;284(1-2):95-108. [Crossref] [PubMed]
- Malaterre V, Ogorka J, Loggia N, Gurny R. Approach to design push-pull osmotic pumps. Int J Pharm. 2009;6;376(1-2):56-62. [Crossref] [PubMed]
- Thombre AG, Zentner GM, Himmelstein KJ. Mechanism of water transport in controlled porosity osmotic devices. J Membr Sci. 1989;40(3):279-310. [Crossref]
- Bindschaedler C, Gurny R, Doelker E. Osmotic water transport through cellulose acetate membranes produced from a latex system. J Pharm Sci. 1987;76(6):455-60. [Crossref] [PubMed]
- Guo JH. Effects of plastizers on water permeation and mechanical properties of cellulose acetate antiplasticization in slightly plastized polymer film. Drug Dev Ind Pharm. 1993;19(13):1541-55. [Crossref]
- Theeuwes F. Evolution and design of "rate controlled" osmotic forms. Curr Med Res Opin. 1983;8(sup2):20-7. [Crossref] [PubMed]
- Liu L, Ku J, Khang G, Lee B, Rhee JM, Lee HB. Nifedipine controlled delivery by sandwiched osmotic tablet system. J Control Release. 2000;10;68(2):145-56. [Crossref] [PubMed]
- Thombre AG, Appel LE, Chidlaw MB, Daugherity PD, Dumont F, Evans LA, et al. Osmotic drug delivery using swellable-core technology. J Control Release. 2004;8;94(1):75-89. [Crossref] [PubMed]
- Malaterre V, Ogorka J, Loggia N, Gurny R. Evaluation of the tablet core factors influencing the release kinetics and the loadability of push-pull osmotic systems. Drug Dev Ind Pharm. 2009;35(4):433-9. [Crossref] [PubMed]
- Zentner GM, Rork GS, Himmelstein KJ. The controlled porosity osmotic pump. J Control Release. 1985;1(4):269-82. [Crossref]
- Sanap LS, Savkare AD. Controlled porosity osmotic pump a review. Int J Pharma Res Dev. 2014;5(12):71-80. [Link]
- Lindstedt B, Ragnarsson G, Hjartstam J. Osmotic pumping as a release mechanism for membrane-coated drug formulations. Int J Pharm. 1989;56(3):261-8. [Crossref]
- Sahithi, Prathyusha A, Rao VUM. A Rewiev on oral osmotically driven systems. Int J Innov Pharm Sci Res. 2015;3(5):423-439. [Link]
- Babu CA, Rao MP, Ratna VJ. Controlled porosity osmotic pump tablets- an overview. J Pharm Res Health Care. 2010;2(1):114-26. [Link]
- Dortunç B. Oral Sistemler. Gürsoy AZ, editör. Kontrollü salım sistemleri. 1. Baskı. istanbul: Kontrollü salım sistemleri Derneği; 2002. p.165-7. [Link]
- Babasaheb B, Sandip H, Sachin D. Osmotic drug delivery systems: An overview. Int J Pharm Pharm Res. 2014;2(1):29-44. [Link]
- Gupta RN, Gupta R, Basniwal PK, Rathore GS. Osmotically controlled oral drug delivery systems: a review. Int J Pharm Sci. 2009;1(2):269-75. [Link]
.: Process List