Oksisteroller, kolesterolün oksidasyonu sonucu oluşan 27-C'li yan ürünleridir. Farklı kimyasal yapılara sahip çok sayıda oksisterol türevi bulunmaktadır. Kolesterol molekülüne bir oksijenli fonksiyonel grubun çeşitli pozisyonlarda eklenmesi ile oluşan oksisteroller, kolesterol molekülünün yarı ömrünü büyük ölçüde azaltmaktadır. Bu moleküller, kolesterolün vücuttan atılımını artırır ya da suda çözünen safra asitlerinin oksidasyon reaksiyonlarına aracılık eder. Ayrıca, molekülün, lipofilik membranları geçmesine olanak sağlar. Oksisteroller, özellikle steroid yan zincirine oksijen eklenmesiyle kolaylıkla hücrelerden dışarı taşınabilir ve böylece ekstrahepatik kaynaklardan kolesterolün uzaklaştırılmasını kolaylaştırır. Oksisteroller, enzimatik ve enzimatik olmayan yollarla olmak üzere iki farklı yolaktan oluşabilir veya üretilir. Dolaşımda ve dokularda enzimatik yolla oluşan oksisteroller daha fazla bulunmaktadır ve bu türevler vücutta önemli biyolojik faaliyetlerin regülasyonunda görevler almaktadır. Enzimatik olmayan (oto-oksidasyon) yolla oluşan oksisterol türevleri ise patolojik olayların oluşumuna katkıda bulunurlar. Sitotoksik ve pro-apoptotik özellikleri yanı sıra inflamatuar yanıtları indükledikleri ve hücre farklılaşma sürecinde yer almaları nedeniyle ateroskleroz, yaşlanma, Alzheimer ve kanser gibi pek çok hastalığın oluşum mekanizmasında rol oynadıkları belirtilmektedir. Memeli dokularında çok düşük konsantrasyonlarda olduğu belirlenen oksisteroller, pek çok patolojik durumda dokularda yüksek düzeylere ulaşabilmektedir. Bu nedenle, kolesterolün atılım yolaklarında oluşan bu moleküllerin hastalıkların teşhisi ve izlenmesinde biyobelirteç olarak kullanılabileceği düşünülmektedir. Bu çalışmada, pek çok hastalığın patogenezi ile de ilişkilendirilen oksisterollerin biyolojik etkileri ve kronik hastalıklarla ilişkileri ortaya konulmuştur.
Anahtar Kelimeler: Oksisteroller; kolesterol; oto-oksidasyon; kronik hastalık
Oxysterols are with 27-C by-side products formed by oxidation of cholesterol. There are numerous oxysterol derivatives with different chemical structures. Oxysterols formed by the addition of an oxygenated functional group to the cholesterol molecule greatly reduce the half-life of the cholesterol molecule. These molecules increase the excretion of cholesterol or mediate the oxidation reactions of water-soluble bile acids. It allows the molecule to pass through the lipophilic membranes. Oxysterols can be easily transported out of the cells with addition of oxygen to the steroid side chain, thus facilitating the removal of cholesterol from extrahepatic sources. Oxysterols can be formed by two different pathways, enzymatic and non-enzymatic pathways. There are more enzymatic occurring oxysterols in circulation and tissues. Enzymatic occurring oxysterols are involved in the regulation of important biological activity in the body. Oxysterol derivatives which are formed by non-enzymatic (auto-oxidation) pathways contribute to the formation of pathological events. In addition to their cytotoxic and pro-apoptotic properties, they induce inflammatory responses and are involved in the process of cell differentiation and they play a role in the formation of many diseases such as atherosclerosis, aging, Alzheimer and cancer. Oxysterols in very low concentrations in mammalian tissues can reach high levels in tissues in pathological conditions. Therefore, it is thought that these molecules formed in cholesterol's excretion pathways can be used as biomarkers in diagnosing and monitoring diseases. In this review, the biological effects of oxysterols associated with the pathogenesis of many diseases and their relationship with chronic diseases have been demonstrated.
Keywords: Oxysterols; cholesterol; auto-oxidation; chronic disease
- Aksoy M. Beslenme Biyokimyasi. 2. Baski. Ankara: Hatipoglu Yayinevi; 2008. p.680.
- Bjorkhem I, Diczfalusy U, Lutjohann D. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr Opin Lipidol. 1999;10(2):161-5. [Crossref] [PubMed]
- Leonarduzzi G, Sottero B, Poli G. Oxidized products of cholesterol: dietary and metabolic origin, and proatherosclerotic effects. J Nutr Biochem. 2002;13(12):700-10. [Crossref]
- Miyoshi N, Iuliano L, Tomono S, Ohshima H. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem Biophys Res Commun. 2014;446(3):702-8. [Crossref] [PubMed]
- Pikuleva IA. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering. Expert Opin Drug Metab Toxicol. 2008;4(11):1403-14. [Crossref] [PubMed] [PMC]
- Bjorkhem I, Diczfalusy U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler Thromb Vasc Biol. 2002;22(5): 734-42. [Crossref] [PubMed]
- Smith LL. Cholesterol autoxidation 1981-1986. Chem Phys Lipids. 1987;44(2-4):87-125. [Crossref]
- Smith LL, Johnson BH. Biological activities of oxysterols. Free Radic Biol Med. 1989;7(3): 285-332. [Crossref]
- Luu B, Moog C. Oxysterols: biological activities and physicochemical studies. Biochimie. 1991;73(10):1317-20. [Crossref]
- Smith LL. Review of progress in sterol oxidations: 1987-1995. Lipids. 1996;31(5):453-87. [Crossref] [PubMed]
- Guardiola F, Codony R, Addis P, Rafecas M, Boatella J. Biological effects of oxysterols: current status. Food Chem Toxicol. 1996;34(2): 193-211. [Crossref]
- Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142(1):1-28. [Crossref]
- Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361-554. [Crossref] [PubMed]
- Lyons MA, Brown AJ. 7-Ketocholesterol. Int J Biochem Cell Biol. 1999;31(3-4):369-75. [Crossref]
- Lange Y, Ye J, Strebel F. Movement of 25-hydroxycholesterol from the plasma membrane to the rough endoplasmic reticulum in cultured hepatoma cells. J Lipid Res. 1995;36(5):1092-7.
- Jusakul A, Yongvanit P, Loilome W, Namwat N, Kuver R. Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis. 2011;10(1): 44. [Crossref] [PubMed] [PMC]
- Russell DW. Nuclear orphan receptors control cholesterol catabolism. Cell. 1999;97(5):539-42. [Crossref]
- Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16(1):459-81. [Crossref] [PubMed]
- Chiang JY, Kimmel R, Stroup D. Regulation of cholesterol 7?-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXR?). Gene. 2001;262(1):257-65. [Crossref]
- Princen HM, Post SM, Twisk J. Regulation of bile acid biosynthesis. Curr Pharm Design. 1997;3:59-64.
- Bjorkhem I. Mechanism of degradation of the steroid side chain in the formation of bile acids. J Lipid Res. 1992;33(4):455-71.
- Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999;96(13):7238-43. [Crossref] [PubMed] [PMC]
- Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res. 1998;39(8):1594-600.
- Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A. 1996;93(18):9799-804. [Crossref] [PubMed] [PMC]
- Bjorkhem I, Lutjohann D, Breuer O, Sakinis A, Wennmalm A. Importance of a novel oxidative mechanism for elimination of brain cholesterol turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem. 1997;272(48):30178-84. [Crossref] [PubMed]
- Bjorkhem I, Andersson U, Ellis E, Alvelius G, Ellegard L, Diczfalusy U, et al. From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24s-hydroxycholesterol (cerebrosterol) in humans. J Biol Chem. 2001;276(40):37004-10. [Crossref] [PubMed]
- Bodin K, Bretillon L, Aden Y, Bertilsson L, Broome U, Einarsson C, et al. Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterolin humans: evidence for involvement of cytochrome P450 3A4. J Biol Chem. 2001;276(42):38685-9. [Crossref] [PubMed]
- Lund EG, Kerr TA, Sakai J, Li WP, Russell DW. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem. 1998;273(51):34316-27. [Crossref] [PubMed]
- Russell DW. Oxysterol biosynthetic enzymes. Biochim Biophys Acta. 2000;1529(1-3):126-35. [Crossref]
- Nelson JA, Steckbeck SR, Spencer TA. Biosynthesis of 24, 25-epoxycholesterol from squalene 2, 3; 22, 23-dioxide. J Biol Chem. 1981;256(3):1067-8.
- Zhang Z, Li D, Blanchard DE, Lear SR, Erickson SK, Spencer TA. Key regulatory oxysterols in liver: analysis as ?4-3-ketone derivatives by HPLC and response to physiological perturbations. J Lipid Res. 2001;42(4): 649-58.
- Gupta A, Sexton RC, Rudney H. Modulation of regulatory oxysterol formation and low density lipoprotein suppression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity by ketoconazole. A role for cytochrome P-450 in the regulation of HMG-CoA reductase in rat intestinal epithelial cells. J Biol Chem. 1986;261(18):8348-56.
- Spencer TA, Gayen AK, Phirwa S, Nelson JA, Taylor F, Kandutsch A, et al. 24(S), 25-Epoxycholesterol. Evidence consistent with a role in the regulation of hepatic cholesterogenesis. J Biol Chem. 1985;260(25):13391-4.
- Olkkonen VM, Beaslas O, Nissila E. Oxysterols and their cellular effectors. Biomolecules. 2012;2(1):76-103. [Crossref] [PubMed] [PMC]
- Lordan S, Mackrill JJ, O'Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321-36. [Crossref] [PubMed]
- Zhang HF, Basra HJ, Steinbrecher UP. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res. 1990;31(8):1361-9.
- Griffiths WJ, Abdel-Khalik J, Crick PJ, Yutuc E, Wang Y. New methods for analysis of oxysterols and related compounds by LC-MS. J Steroid Biochem Mol Biol. 2016;162:4-26. [Crossref] [PubMed]
- De Boussac H, Alioui A, Viennois E, Dufour J, Trousson A, Vega A, et al. Oxysterol receptors and their therapeutic applications in cancer conditions. Expert Opin Ther Targets. 2013;17(9):1029-38. [Crossref] [PubMed]
- Sabuncuoglu S, Oztas Y. Oxysterols and their metabolic roles beyond cholesterol: a reappraisal. Acta Medica. 2014;45(1):75-9.
- Kandutsch A, Shown EP. Assay of oxysterol-binding protein in a mouse fibroblast, cell-free system. Dissociation constant and other properties of the system. J Biol Chem. 1981;256(24):13068-73.
- Jaworski CJ, Moreira E, Li A, Lee R, Rodriguez IR. A family of 12 human genes containing oxysterol-binding domains. Genomics. 2001;78(3):185-96. [Crossref] [PubMed]
- Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1(1):125-30. [Crossref] [PubMed] [PMC]
- Sevanian A, Peterson A. Cholesterol epoxide is a direct-acting mutagen. Proc Natl Acad Sci U S A. 1984;81(13):4198-202. [Crossref] [PubMed] [PMC]
- Garcia-Cruset S, Carpenter KL, Guardiola F, Stein BK, Mitchinson MJ. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res. 2001;35(1): 31-41. [Crossref] [PubMed]
- Lo WB, Black HS. Formation of cholesterol-derived photoproducts in human skin. J Invest Dermatol. 1972;58(5):278-83. [Crossref] [PubMed]
- Liao PL, Cheng YW, Li CH, Lo YL, Kang JJ. Cholesterol-3-beta, 5-alpha, 6-beta-triol induced PI3K-Akt-eNOS-dependent cyclooxygenase-2 expression in endothelial cells. Toxicol Lett. 2009;190(2):172-8. [Crossref] [PubMed]
- Gueguen Y, Bertrand P, Ferrari L, Batt AM, Siest G. Control of apolipoprotein E secretion by 25-hydroxycholesterol and proinflammatory cytokines in the human astrocytoma cell line CCF-STTG1. Cell Biol Toxicol. 2001;17(3): 191-9. [Crossref] [PubMed]
- Kolsch H, Lutjohann D, Tulke A, Bjorkhem I, Rao ML. The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res. 1999;818(1):171-5. [Crossref]
- Bretillon L, Siden A, Wahlund LO, Lutjohann D, Minthon L, Crisby M, et al. Plasma levels of 24S-hydroxycholesterol in patients with neurological diseases. Neurosci Lett. 2000;293(2):87-90. [Crossref]
- Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res. 2000;41(2): 195-8.
- Brown AJ, Leong S, Dean RT, Jessup W. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J Lipid Res. 1997;38 (9):1730-45.
- Liu Y, Hulten LM, Wiklund O. Macrophages isolated from human atherosclerotic plaques produce IL-8, and oxysterols may have a regulatory function for IL-8 production. Arterioscler Thromb Vasc Biol. 1997;17(2):317-23. [Crossref] [PubMed]
- Gamba P, Guglielmotto M, Testa G, Monteleone D, Zerbinati C, Gargiulo S, et al. Up-regulation of β-amyloidogenesis in neuron-like human cells by both 24-and 27-hydroxycholesterol: protective effect of N-acetyl- cysteine. Aging Cell. 2014;13(3): 561-72. [Crossref] [PubMed] [PMC]
- Lazo-de-la-Vega ML, Fernandez-Mejia C. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions. In Oxidative Stress and Chronic Degenerative Diseases-A Role for Antioxidants. InTech; 2013. [Crossref] [PubMed]
- Ferderbar S, Pereira EC, Apolinario E, Bertolami M, Faludi A, Monte O, et al. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev. 2007;23(1):35-42. [Crossref] [PubMed]
- Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I. Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Invest. 2019;42(1):7-17. [Crossref] [PubMed] 4
- Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: Implications for biliary tract carcinogenesis. Hepatology. 2004;39(3):732-8. [Crossref] [PubMed]
- Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol. 2002;190(3):279-86. [Crossref] [PubMed]
- Bischoff F, Rupp JJ. The production of a carcinogenic agent in the degradation of cholesterol to progesterone. Cancer Res. 1946;6(8): 403-9.
- Bischoff F. Cocarcinogenic activity of cholesterol oxidation products and sesame oil. J Natl Cancer Inst. 1957;19(5):977-87.
- Bischoff F. Carcinogenic effects of steroids. Advances in Lipid Research. Adv Lipid Res. 1969;7:165-244. [Crossref] [PubMed]
- Linseisen J, Wolfram G, Miller AB. Plasma 7β-hydroxycholesterol as a possible predictor of lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11(12):1630-7.
- Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, et al. The lipid peroxidation end product 4-hydroxy-2, 3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J. 1997;11(11):851-7. [Crossref] [PubMed]
- Biasi F, Mascia C, Astegiano M, Chiarpotto E, Nano M, Vizio B, et al. Pro-oxidant and proapoptotic effects of cholesterol oxidation products on human colonic epithelial cells: a potential mechanism of inflammatory bowel disease progression. Free Radic Biol Med. 2009;47(12):1731-41. [Crossref] [PubMed]
.: Process List