Teranostik terimi, 'therapy' ve 'diagnostics' kelimelerinin birleştirilmesiyle oluşmuş ve ilk olarak Funkhouser tarafından kullanılmış yeni bir alandır. Teranostikler, genel anlamıyla hastalık yönetim sürecindeki tanısal yöntemlerin ve tedavi yönteminin bir arada uygulanmasını ifade eden bir kavramdır. Günümüzde uzayan yaşam süresi ve kronik hastalıkların artması ile yeni ilaç teknolojilerinde yaşanan gelişmelerin önemi de gün geçtikçe artmaktadır. Bu yeni ilaç sistemlerinden biri olan ve başta kanser hastalığı olmak üzere birçok hastalığın tanısında veya tedavisinde umut veren kullanımı ile yenilikçi bir yaklaşım sunan teranostikler sayesinde tanısal testlerden elde edilen sonuçlarla hedefe özgü tedavi sistemi birleştirilebilmekte ve böylece kişiselleştirilmiş tıp alanında uygulamalar yapılabilmektedir. Teranostik sistemlerin kullanımı sayesinde hastalıkların tanısı konulabilmekte ve tedavisi uygulanabilmektedir. Bunların yanı sıra hasta tarafından tedaviye verilen cevabın izlenmesi, uygulanan ilaçların etkinliğinin ve güvenliğinin artırılması da amaçlanmaktadır. Teranostik sistemler oldukça yenilikçi bir kavram olup, üzerinde yoğun bir şekilde araştırmalar yapılan güncel konulardan bir tanesidir. Bu derlemede, teranostiklerin manyetik rezonans görüntüleme, optik görüntüleme, bilgisayarlı tomografi, ultrasonografi ve nükleer tıp görüntüleme yöntemleri (pozitron emisyon tomografisi ve tek foton emisyon tomografisi) gibi görüntüleme sistemlerinde kullanılmasıyla ilgili çalışmalar incelenerek örneklendirilmiştir. Ayrıca teranostiklerin kullanılabileceği nükleer onkoloji, enfeksiyon hastalıkları, nörodejeneratif hastalıklar ve nöroinflamasyon, kardiyovasküler hastalıklar ve inflamasyon hastalıkları gibi hastalıklara göre sınıflandırılması yapılarak, teranostiklere genel bir bakış sağlanmıştır.
Anahtar Kelimeler: Teranostik nanotıp; radyofarmasötikler; tanısal görüntüleme; kanser; kişiselleştirilmiş tıp
The term theranostic is a new field that was formed by combining the words "therapy" and "diagnostics" and was first used by Funkhouser. Theranostics is a concept that expresses the application of diagnostic and treatment methods in the disease management process in general terms. Today, the importance of developments in new drug technologies is increasing day by day with the prolonged life expectancy and the increase in chronic diseases. Thanks to the theranostics, which is one of these new drug systems and offers an innovative approach with its promising use in the diagnosis or treatment of many diseases, especially cancer, the results obtained from diagnostic tests can be combined with a target-specific treatment system, and thus applications can be made in the field of personalized medicine. Thanks to the use of theranostic systems, diseases can be diagnosed and treated. In addition to these, it is also aimed to monitor the response given by the patient to the treatment and to increase the effectiveness and safety of the drugs administered. In this review, studies on the use of theranostics in imaging systems such as magnetic resonance imaging, optical imaging, computed tomography, ultrasonography and nuclear medicine imaging methods (positron emission tomography and single photon emission tomography) are examined and exemplified. In addition, an overview of theranostics is provided by classifying them according to diseases such as nuclear oncology, infectious diseases, neurodegenerative diseases and neuroinflammation, cardiovascular diseases and inflammatory diseases in which theranostics can be used.
Keywords: Theranostic nanomedicine; radiopharmaceuticals; diagnostic imaging; cancer; personalized medicine
- Nurili F, Uçmak Vural G, Aras Ö. Teranostik platformlarda moleküler görüntüleme yöntemleri [Molecular imaging methods on theranostic platforms]. Nükleer Tıp Semin. 2015;2:120-7. [Crossref]
- Ekinci M, İlem Özdemir D. Nanoteranostikler [Nanotheranostics]. J Fac Pharm Ankara. 2021;45(1):131-55. [Link]
- Ekinci M, İlem Özdemir D. Radyofarmasötikler ve teranostikler [Radiopharmaceuticals and theranostics]. J Lit Pharm Sci. 2021;10(1):119-32. [Crossref]
- Jain T, Kumar S, Dutta PK. Theranostics: a way of modern medical diagnostics and the role of chitosan. J Mol Genet Med. 2015;9(1):1-5. [Link]
- Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm. 2019;558:29-42. [Crossref] [PubMed]
- Lee DY, Li KC. Molecular theranostics: a primer for the imaging professional. AJR Am J Roentgenol. 2011;197(2):318-24. [Crossref] [PubMed] [PMC]
- Aydoğdu A, Aydoğdu Y, Yakıncı ZD. Temel radyolojik inceleme yöntemlerini tanıma [Recognition of basic radiological investigation methods]. İÜ Sağlık Hizmetleri Meslek Yüksekokulu Derg. 2017;5(2):44-53. [Link]
- Wang C, Ravi S, Garapati US, Das M, Howell M, MallelaMallela J, et al. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and mri contrast agents. J Mater Chem B. 2013;1(35):4396-405. [Crossref] [PubMed] [PMC]
- Kim KS, Park W, Hu J, Bae YH, Na K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials. 2014;35(1):337-43. [Crossref] [PubMed]
- Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, et al. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012;33(26):6186-93. [Crossref] [PubMed] [PMC]
- Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007;28(8):1565-71. [Crossref] [PubMed]
- Srinivasan S, Manchanda R, Fernandez-Fernandez A, Lei T, McGoron AJ. Near-infrared fluorescing IR820-chitosan conjugate for multifunctional cancer theranostic applications. J Photochem Photobiol B. 2013;119:52-9. [Crossref] [PubMed]
- Shi H, Niu M, Tan L, Liu T, Shao H, Fu C, et al. A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles. Chem Sci. 2015;6(8):5016-26. [Crossref] [PubMed] [PMC]
- Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13(5):636-41. [Crossref] [PubMed]
- Min HS, You DG, Son S, Jeon S, Park JH, Lee S, et al. Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics. 2015;5(12):1402-18. [Crossref] [PubMed] [PMC]
- Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics. 2008;48(4):260-70. [Crossref] [PubMed] [PMC]
- Ekinci M, İlem Özdemir D. Current approaches in nanomedicine. Arch Nano Op Acc J. 2020;2(3):183-4. [Link]
- Kraeber-Bodéré F, Barbet J. Challenges in nuclear medicine: innovative theranostic tools for personalized medicine. Front Med (Lausanne). 2014;1:16. [Crossref] [PubMed] [PMC]
- Kotzerke J, Andreeff M, Wunderlich G, Wiggermann P, Zöphel K. Ventilations-Perfusions-Lungenszintigraphie mit der PET und 68Ga-markierten Radiopharmaka [Ventilation-perfusion-lungscintigraphy using PET and 68Ga-labeled radiopharmaceuticals]. Nuklearmedizin. 2010;49(6):203-8. German. [Crossref] [PubMed]
- Kao HW, Lin YY, Chen CC, Chi KH, Tien DC, Hsia CC, et al. Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorg Med Chem Lett. 2013;23(11):3180-5. [Crossref] [PubMed]
- Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027-39. [Crossref] [PubMed] [PMC]
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. Erratum in: CA Cancer J Clin. 2020;70(4):313. [Crossref] [PubMed]
- Ekinci M, İlem Özdemir D. İyonlaştırıcı radyasyon ve onkolitik virüsler ile kombine tedavinin etkileri [The effects of combination therapy of ionizing radiation and oncolytic viruses]. FABAD J Pharm Sci. 2021;46(1):79-92. [Link]
- Gökoğlan E, Ekinci M, Özgenç E, İlem Özdemir D, Aşıkoğlu M. Radyasyon ve insan sağlığı üzerindeki etkileri [Radiation and its effects on human health]. Anatol Clin. 2020;25(3):289-94. [Link]
- Jo SD, Ku SH, Won YY, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics. 2016;6(9):1362-77. [Crossref] [PubMed] [PMC]
- Jadvar H, Chen X, Cai W, Mahmood U. Radiotheranostics in cancer diagnosis and management. Radiology. 2018;286(2):388-400. [Crossref] [PubMed] [PMC]
- Baum RP, Kulkarni HR. THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - the bad berka experience. Theranostics. 2012;2(5):437-47. [Crossref] [PubMed] [PMC]
- Özkan E, Soydal Ç. Nöroendokrin tümörlerde teranostikler [Theranostics in neuroendocrine tumors]. Nükleer Tıp Semin. 2015;2:103-8. [Crossref]
- Farolfi A, Fendler W, Iravani A, Haberkorn U, Hicks R, Herrmann K, et al. Theranostics for advanced prostate cancer: current indications and future developments. Eur Urol Oncol. 2019;2(2):152-62. [Crossref] [PubMed]
- Virgolini I, Decristoforo C, Haug A, Fanti S, Uprimny C. Current status of theranostics in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(3):471-95. [Crossref] [PubMed] [PMC]
- Bluemel C, Hahner S, Heinze B, Fassnacht M, Kroiss M, Bley TA, et al. Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin Nucl Med. 2017;42(1):e29-34. [Crossref] [PubMed]
- Khalid U, Vi C, Henri J, Macdonald J, Eu P, Mandarano G, et al. Radiolabelled aptamers for theranostic treatment of cancer. Pharmaceuticals (Basel). 2018;12(1):2. [Crossref] [PubMed] [PMC]
- Kaul A, Chaturvedi S, Attri A, Kalra M, Mishra AK. Targeted theranostic liposomes: Rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv. 2016;6(34):28919-26. [Crossref]
- Mak WC, Cheung KY, Orban J, Lee CJ, Turner AP, Griffith M. Surface-engineered contact lens as an advanced theranostic platform for modulation and detection of viral infection. ACS Appl Mater Interfaces. 2015;7(45):25487-94. [Crossref] [PubMed]
- Huang JF, Zhong J, Chen GP, Lin ZT, Deng Y, Liu YL, et al. A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano. 2016;10(7):6464-73. [Crossref] [PubMed]
- Portnoy E, Vakruk N, Bishara A, Shmuel M, Magdassi S, Golenser J, et al. Indocyanine green liposomes for diagnosis and therapeutic monitoring of cerebral malaria. Theranostics. 2016;6(2):167-76. [Crossref] [PubMed] [PMC]
- Dao P, Ye F, Liu Y, Du ZY, Zhang K, Dong CZ, et al. Development of phenothiazine-based theranostic compounds that act both as inhibitors of β-amyloid aggregation and as imaging probes for amyloid plaques in Alzheimer's disease. ACS Chem Neurosci. 2017;8(4):798-806. [Crossref] [PubMed]
- Tang J, Lobatto ME, Read JC, Mieszawska AJ, Fayad ZA, Mulder WJ. Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep. 2012;5(1):19-25. [Crossref] [PubMed] [PMC]
- Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(9):2103-9. [Crossref] [PubMed]
- Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation. 2002;106(22):2842-7. [Crossref] [PubMed]
- Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A. 2009;106(24):9815-9. [Crossref] [PubMed] [PMC]
- Sun Z, Huang P, Tong G, Lin J, Jin A, Rong P, et al. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale. 2013;5(15):6857-66. [Crossref] [PubMed] [PMC]
- Albuquerque J, Moura CC, Sarmento B, Reis S. Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules. 2015;20(6):11103-18. [Crossref] [PubMed] [PMC]
- Cho H, Stuart JM, Magid R, Danila DC, Hunsaker T, Pinkhassik E, et al. Theranostic immunoliposomes for osteoarthritis. Nanomedicine. 2014;10(3):619-27. [Crossref] [PubMed] [PMC]
- Lee A, De Mei C, Fereira M, Marotta R, Yoon HY, Kim K, et al. Dexamethasone-loaded polymeric nanoconstructs for monitoring and treating inflammatory bowel disease. Theranostics. 2017;7(15):3653-66. [Crossref] [PubMed] [PMC]
.: Process List