Diabetes mellitus, yüksek kan glukoz seviyeleri ile karakterize kronik, metabolik bir hastalıktır. Tedavisinde kullanılan en önemli molekül insülindir. İnsülin, pankreasın Langerhans adacıklarının β hücreleri tarafından üretilen, kan glukoz seviyesini düzenleme etkisini monomerik formunun insülin reseptörüne bağlanmasıyla gösteren bir hormondur. İnsülin vücuda subkütan yoldan verilmektedir fakat bu yol ile hasta uyuncu oldukça düşüktür. Ayrıca subkütan uygulama, enjeksiyon bölgesinde lipodistrofiye, alerjik reaksiyonlara ve enfeksiyona neden olmaktadır. İnsülin oral yol ile uygulandığında gastrointestinal (Gİ) kanalda proteolitik enzimler ile hızla parçalanmakta, yapısı dolayısıyla da düşük absorpsiyon göstermektedir. İnsülinin Gİ kanalda parçalanmasını önlemek ve oral biyoyararlanımını artırmak için birçok çalışma yapılmakta; bu çalışmalar nanopartiküler ilaç taşıyıcı sistemler üzerinde yoğunlaşmaktadır. Doğal (kitosan, aljinat, dekstran) veya sentetik (poli-laktik-ko glikolik asit, poli-laktik asit) polimerler ile hazırlanan nanopartiküllerin; çözünürlük artırma, modifiye salım sağlama, emilimi artırma ve oral biyoyararlanımı iyileştirme gibi pek çok faydası bulunmaktadır. İnsülin taşıyan bir nanopartiküler sistemin, insülini mide asidinden ve proteazlardan koruması, Gİ kanalda kalış süresini uzatması ve absorpsiyonunu artırması beklenir. Bu amaçla, nanopartiküler ilaç taşıyıcı sistem formülasyonlarına, insülinin bağırsak absorpsiyonunu artırmak için absorpsiyon artırıcılar, insülinin proteazlarla parçalanmasını engellemek için enzim inhibitörleri ilave edilebilir. Ayrıca insülinin midede parçalanmasını engellemek için enterik kaplama yapılabilmektedir. Bu derlemede diyabet hastalığı, insülin ve insülinin oral yoldan verilmesiyle ilgili kısaca genel bilgiler verilerek, insülin yüklü nanopartiküler ilaç taşıyıcı sistemler ile ilgili güncel literatür örneklerine odaklanılmıştır.
Anahtar Kelimeler: Diabetes mellitus; oral uygulama; ilaç taşıyıcı sistem; nanopartikül; insülin
Diabetes mellitus is a chronic, metabolic disease characterized by high blood glucose levels. The most important molecule used in its treatment is insulin. Insulin is a hormone produced by the β cells of the islets of Langerhans of the pancreas, which shows its blood glucose level regulation effect by binding its monomeric form to the insulin receptor. Insulin is applied subcutaneously, but patient compliance is very low by this route. In addition, subcutaneous administration causes lipodystrophy, allergic reactions and infection at the injection site. When insulin is administered orally, it is rapidly degraded by proteolytic enzymes in the gastrointestinal (GI) tract, and has low absorption due to its structure. Many studies are carried out to prevent the degradation of insulin in the GI tract and to increase its oral bioavailability; these studies focus on nanoparticular drug delivery systems. Nanoparticles prepared with natural (chitosan, alginate, dextran) or synthetic (poly-lactic-co-glycolic acid, poly-lactic acid) polymers, have many benefits such as increasing solubility, providing modified release, increasing absorption and improving oral bioavailability. An insulin-encapsulated nanoparticular system is expected to protect insulin from both harsh acidic conditions of stomach and degradation by proteases, prolong its residence time in the GI track and enhance its intestinal uptake. Nanoparticulate systems can also be formulated using penetration enhancers to increase intestinal penetration of insulin and enzyme inhibitors to inhibit the insulin degradation by proteases. Furthermore, enteric coating could be applied to prevent the breakdown of insulin in the stomach, In this review, brief general information about diabetes, insulin and oral administration of insulin is presented and recent literature about insulin loaded nanoparticulate drug delivery systems is focused on.
Keywords: Diabetes mellitus; oral administration; drug delivery system; nanoparticle; insulin
- Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23(3):351-8. [Crossref] [PubMed]
- Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol. 2021;26(2):157-66. [Crossref] [PubMed]
- Las G, Oliveira MF, Shirihai OS. Emerging roles of β-cell mitochondria in type-2-diabetes. Mol Aspects Med. 2020;71:100843. [Crossref] [PubMed]
- Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, et al. Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 2019;13(1):364-72. [Crossref] [PubMed]
- Sharma G, Sharma AR, Nam JS, Doss GP, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology. 2015;13:74. [Crossref] [PubMed] [PMC]
- Dong H, Woo SL. Hepatic insulin production for type 1 diabetes. Trends Endocrinol Metab. 2001;12(10):441-6. [Crossref] [PubMed]
- Easa N, Alany RG, Carew M, Vangala A. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discov Today. 2019;24(2):440-51. [Crossref] [PubMed]
- Domon A, Katayama K, Tochigi Y, Suzuki H. Characterization of novel nonobese type 2 diabetes rat model with enlarged kidneys. J Diabetes Res. 2019:8153140. [Crossref] [PubMed] [PMC]
- Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247-75. [Crossref] [PubMed]
- Iyer H, Khedkar A, Verma M. Oral insulin - a review of current status. Diabetes Obes Metab. 2010;12(3):179-85. Erratum in: Diabetes Obes Metab. 2010;12(3). Erratum in: Diabetes Obes Metab. 2010;12(10):928. [Crossref] [PubMed]
- Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm-2020 Executive Summary. Endocr Pract. 2020;26(1):107-39. [Crossref] [PubMed]
- World Health Organization [Internet]. © 2022 WHO [Cited: January 25, 2022]. Diabetes. Available from: [Link]
- Jirácek J, Záková L, Antolíková E, Watson CJ, Turkenburg JP, Dodson GG, et al. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc Natl Acad Sci U S A. 2010;107(5):1966-70. [Crossref] [PubMed] [PMC]
- Mathieu C. Minimising hypoglycaemia in the real world: the challenge of insulin. Diabetologia. 2021;64(5):978-84. [Crossref] [PubMed]
- Pillai O, Panchagnula R. Insulin therapies-past, present and future. Drug Discov Today. 2001;6(20):1056-61. [Crossref] [PubMed]
- Sharma AK, Taneja G, Kumar A, Sahu M, Sharma G, Kumar A, et al. Insulin analogs: glimpse on contemporary facts and future prospective. Life Sci. 2019;219:90-9. [Crossref] [PubMed]
- Damgé C, Reis CP, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert Opin Drug Deliv. 2008;5(1):45-68. [Crossref] [PubMed]
- Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70(2):197-213. [Crossref] [PubMed]
- Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, et al. Silica nanoparticles on the oral delivery of insulin. Expert Opin Drug Deliv. 2018;15(8):805-20. [Crossref] [PubMed]
- Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release. 2019;313:1-13. [Crossref] [PubMed]
- Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol. 2018;120(Pt A):775-82. [Crossref] [PubMed]
- Arbit E, Kidron M. Oral insulin delivery in a physiologic context: review. J Diabetes Sci Technol. 2017;11(4):825-32. [Crossref] [PubMed] [PMC]
- Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265-72. [Crossref] [PubMed]
- Lee VHL, Dodda-Kashi S, Grass GM, Werner R. Oral route of peptide and protein drug delivery. In: Lee VHL, ed. Peptide and Protein Drug Delivery. 1st ed. New York: Marcel Dekker Inc; 1991. p.691-738.
- Brange J, Langkjaer L. Chemical stability of insulin. 3. Influence of excipients, formulation, and pH. Acta Pharm Nord. 1992;4(3):149-58. [PubMed]
- Zhang T, Tang JZ, Fei X, Li Y, Song Y, Qian Z, et al. Can nanoparticles and nano-protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B. 2021;11(3):651-67. [Crossref] [PubMed] [PMC]
- Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci. 2019;138:105019. [Crossref] [PubMed]
- Li P, Tan A, Prestidge CA, Nielsen HM, Müllertz A. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading. Int J Pharm. 2014;477(1-2):390-8. [Crossref] [PubMed]
- Wong CY, Martinez J, Carnagarin R, Dass CR. In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J Pharm Pharmacol. 2017;69(3):285-94. [Crossref] [PubMed]
- Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 2015;33(6 Pt 3):1342-54. Erratum in: Biotechnol Adv. 2016;34(1):64. [Crossref] [PubMed]
- Sharma G, Wilson K, van der Walle CF, Sattar N, Petrie JR, Ravi Kumar MN. Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats. Eur J Pharm Biopharm. 2010;76(2):159-69. [Crossref] [PubMed]
- Krauland AH, Guggi D, Bernkop-Schnürch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release. 2004;95(3):547-55. [Crossref] [PubMed]
- Su FY, Lin KJ, Sonaje K, Wey SP, Yen TC, Ho YC, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801-11. [Crossref] [PubMed]
- Ukai H, Iwasa K, Deguchi T, Morishita M, Katsumi H, Yamamoto A. Enhanced intestinal absorption of insulin by capryol 90, a novel absorption enhancer in rats: implications in oral insulin delivery. Pharmaceutics. 2020;12(5):462. [Crossref] [PubMed] [PMC]
- Ukai H, Kawagoe A, Sato E, Morishita M, Katsumi H, Yamamoto A. Propylene glycol caprylate as a novel potential absorption enhancer for improving the intestinal absorption of insulin: efficacy, safety, and absorption-enhancing mechanisms. J Pharm Sci. 2020;109(4):1483-92. [Crossref] [PubMed]
- Ağardan NBM. Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-[beta]-CD inclusion complex. Istanbul J Pharm. 2020;50(1):54-9. [Link]
- Cao SJ, Xu S, Wang HM, Ling Y, Dong J, Xia RD, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech. 2019;20(5):190. [Crossref] [PubMed] [PMC]
- Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106(Pt B):256-76. [Crossref] [PubMed]
- Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32(36):9826-38. [Crossref] [PubMed]
- Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164-73. [Crossref] [PubMed]
- Song M, Wang H, Chen K, Zhang S, Yu L, Elshazly EH, et al. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S774-S82. [Crossref] [PubMed]
- El Leithy ES, Abdel-Bar HM, Ali RA. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm. 2019;571:118708. [Crossref] [PubMed]
- Sudhakar S, Chandran SV, Selvamurugan N, Nazeer RA. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol. 2020;150:281-8. [Crossref] [PubMed]
- Cheng H, Guo S, Cui Z, Zhang X, Huo Y, Guan J, et l. Design of folic acid decorated virus-mimicking nanoparticles for enhanced oral insulin delivery. Int J Pharm. 2021;596:120297. [Crossref] [PubMed]
- Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 2018;151:13-23. [Crossref] [PubMed]
- Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today. 2012;17(13-14):784-92. [Crossref] [PubMed]
- Chen X, Ren Y, Feng Y, Xu X, Tan H, Li J. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 2019;562:23-30. [Crossref] [PubMed]
- Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640-8. [Crossref] [PubMed]
- Li M, Sun Y, Ma C, Hua Y, Zhang L, Shen J. Design and investigation of penetrating mechanism of octaarginine-modified alginate nanoparticles for improving intestinal insulin delivery. J Pharm Sci. 2021;110(1):268-79. [Crossref] [PubMed]
- Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release. 2007;122(2):141-50. [Crossref] [PubMed]
- Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010;41(3-4):556-63. [Crossref] [PubMed]
- Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol. 2019;123:968-78. [Crossref] [PubMed]
- Bao X, Qian K, Yao P. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. J Mater Chem B. 2021;9(31):6234-45. [Crossref] [PubMed]
- Malathi S, Nandhakumar P, Pandiyan V, Webster TJ, Balasubramanian S. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine. 2015;10:2207-18. [Crossref] [PubMed] [PMC]
- Jain A, Jain SK. L-Valine appended PLGA nanoparticles for oral insulin delivery. Acta Diabetol. 2015;52(4):663-76. [Crossref] [PubMed]
- Jaradat A, Macedo MH, Sousa F, Arkill K, Alexander C, Aylott J, et al. Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. Int J Pharm. 2020;585:119516. [Crossref] [PubMed]
- Akhavan Farid E, Davachi SM, Pezeshki-Modaress M, Taranejoo S, Seyfi J, et al. Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications. J Biomater Sci Polym Ed. 2020;31(7):910-37. [Crossref] [PubMed]
- Lei C, Liu XR, Chen QB, Li Y, Zhou JL, Zhou LY, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416-33. [Crossref] [PubMed]
- Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, et al. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech. 2012;13(3):836-45. [Crossref] [PubMed] [PMC]
- Tian H, He Z, Sun C, Yang C, Zhao P, Liu L, et al. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater. 2018;7(17):e1800285. [Crossref] [PubMed]
- Luo YY, Xiong XY, Tian Y, Li ZL, Gong YC, Li YP. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv. 2016;23(6):1882-91. [PubMed]
- Minimol PF, Paul W, Sharma CP. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Carbohydr Polym. 2013;95(1):1-8. [Crossref] [PubMed]
- Zhang Z, Shan H, Chen L, He C, Zhuang X, Chen X. Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. Eur Polym J. 2013;49(8):2082-91. [Crossref]
- Zhang Z, Lv H, Zhou J. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Pharmazie. 2009;64(9):574-8. [PubMed]
- Muntoni E, Anfossi L, Milla P, Marini E, Ferraris C, Capucchio MT, et al. Glargine insulin loaded lipid nanoparticles: oral delivery of liquid and solid oral dosage forms. Nutr Metab Cardiovasc Dis. 2021;31(2):691-8. [Crossref] [PubMed]
- Wang T, Shen L, Zhang Y, Li H, Wang Y, Quan D. "Oil-soluble" reversed lipid nanoparticles for oral insulin delivery. J Nanobiotechnology. 2020;18(1):98. [Crossref] [PubMed] [PMC]
- Koland M, Anchan RB, Mukund SG, Sindhoor S. Design and investigation of alginate coated solid lipid nanoparticles for oral insulin delivery. Indian J Pharm Educ Res. 2021;55(2):383-94. [Crossref]
- Juère E, Caillard R, Marko D, Del Favero G, Kleitz F. Smart protein-based formulation of dendritic mesoporous silica nanoparticles: toward oral delivery of insulin. Chemistry. 2020;26(23):5195-9. [Crossref] [PubMed] [PMC]
- Tan X, Yin N, Liu Z, Sun R, Gou J, Yin T, et al. Hydrophilic and electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm. 2020;17(9):3177-91. [Crossref] [PubMed]
- Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang JH, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364-75. [Crossref] [PubMed]
- Küünal S, Rauwel P, Rauwel E. Plant extract mediated synthesis of nanoparticles. In: Makhlouf ASH, Barhoum A, eds. Emerging Applications of Nanoparticles and Architecture Nanostructures. 1st ed. New York: Elsevier Inc; 2018. p.411-46. [Crossref]
- Holkar CR, Jain SS, Jadhav AJ, Pinjari DV. Scale-up technologies for advanced nanomaterials for green energy: feasibilities and challenges. In: Bhanvese BA, Pawade VB, Dhoble SJ, Sonawane SH, Ashokkumar M, eds. Nanomaterials for Green Energy. 1st ed. New York: Elsevier Inc; 2018. p.433-55. [Crossref]
- Kumari Y, Singh SK, Kumar R, Kumar B, Kaur G, Gulati M, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2020;149:976-88. [Crossref] [PubMed]
- Cho HJ, Oh J, Choo MK, Ha JI, Park Y, Maeng HJ. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15-20. [Crossref] [PubMed]
.: Process List