Mikotoksinler, hasat öncesi, hasat sırasında ve/veya hasat sonrası tarımsal ürünleri kontamine eden ve çoğunlukla hayvan ve insanlarda toksisiteye neden olan, mantarlar tarafından salınan ikincil metabolitlerdir. Bu derlemenin amacı, mantar toksinlerinin antikanser aktivitelerinin mekanizmalarını ve yeni antikanser ilaç geliştirilmesindeki önemini açıklamaktır. Gıda, tahıl ve yemlerde yaygın olarak kontaminasyona neden olan mikotoksinler, çeşitli mantar türleri tarafından oluşturulan ikincil metabolitlerdir. Başlıca mikotoksinler trikotesenler, fumonisinler ve zearalenon, patulin; bunların dışında fusarik asit, moniliformin, fusaproliferin, fusariosis, enniatinler ve beauverisin, MT81 olarak bilinmektedir. Mikotoksinlere uzun dönem yüksek dozda maruziyet, ciddi sağlık sorunlarına yol açmaktadır. Ancak mikotoksinlerle ilgili çalışmalarda, uygun dozlarda birçoğunun in vitro antikanser aktivite gösterdiği bulunmuştur. İnsanlarda kanserin gelişimi, çeşitli endojen ve ekzojen uyaranların aracılık ettiği hücresel ve moleküler değişiklikleri ve oksidatif DNA hasarını içeren karmaşık süreçleri kapsar. Kanserin ilerlemesinde ana mekanizmalardan biri olan oksidatif stres ve reaktif oksijen türleri, antikanser ilaç geliştirmede önemli hedefler olarak düşünülmektedir. Birçok mikotoksinin bu mekanizma ile antikanser aktivite gösterdiği bilinmektedir. Patulin, T-2 toksin, beauverisin, zearalenon, MT81, rubratoksin gibi mikotoksinlerin farklı hücre hatlarında antikanser aktiviteleri gösterilmiştir. Hem in vitro hem de in vivo çalışmalar, mikotoksinlerin toksikokinetiğinin, biyoyararlanımının ve etki mekanizmalarının ilgili türlere bağlı olarak değiştiğini göstermiştir, ancak spesifik yanıtları daha iyi anlamak için ek çalışmalara ihtiyaç vardır. Bu derlemede, önemli mikotoksinlere ve bunların yapısal analoglarının in vitro ve in vivo antikanser etkilerinin değerlendirildiği literatür çalışmalarına yer verilmiştir.
Anahtar Kelimeler: Mikotoksin; antikanser aktivite; mantarlar; hücre kültürü
Mycotoxins are secondary metabolites released by fungi that contaminate pre-harvest, during-harvest, and/or post-harvest agricultural products and cause toxicity mostly to animals and humans. The purpose of this review is to explain the mechanisms of anticancer activities of fungal toxins and their importance in the development of new anticancer drugs. Mycotoxins, which commonly cause contamination of food, grain, and feed, are secondary metabolites produced by various fungal species. The main mycotoxins are trichothecenes, fumonisins, zearalenone, patulin, fusaric acid, moniliformin, fusaproliferin, fusariosis, enniatins, beauvericin, and MT81. Long-term high-dose exposure to mycotoxins causes serious health problems. However, studies on mycotoxins have found that most of them show in vitro anticancer activity at appropriate doses. The development of cancer in humans encompasses complex processes that include oxidative DNA damage and cellular and molecular changes mediated by a variety of endogenous and exogenous stimuli. Oxidative stress and reactive oxygen species, one of the main mechanisms in cancer progression, are considered important targets in anticancer drug development. It is known that many mycotoxins show anticancer activity by this mechanism. Anticancer activities of mycotoxins such as patulin, T-2 toxin, beauvericin, zearalenone, MT81, and rubratoxin have been demonstrated in different cell lines. Both in vitro and in vivo studies have shown that the toxicokinetics, bioavailability, and mechanisms of action of mycotoxins vary depending on the species involved, but additional studies are needed to better understand the specific responses. In this review, literature studies evaluating the in vitro and in vivo anticancer effects of important mycotoxins and their structural analogs are included.
Keywords: Mycotoxin; anticancer activity; mushrooms; cell culture
- Forgacs J, Carll WT. Mycotoxicoses. Adv Vet Sci. 1962;7:273-382.
- Peto J. Cancer epidemiology in the last century and the next decade. Nature. 2001;411(6835):390-5. [Crossref] [PubMed]
- Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108. [Crossref] [PubMed]
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. [Crossref] [PubMed]
- Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci. 2015;6:573. [Crossref] [PubMed] [PMC]
- Heidtmann-Bemvenuti R, Mendes GL, Scaglioni PT, Badiale-Furlong E, Souza-Soares LA. Biochemistry and metabolism of mycotoxins: A review. Afr J Food Sci. 2011;5(16):861-9.[Crossref]
- Alvi KA, Rabenstein J, Woodard J, Baker DD, Bergthold JD, Lynch J, et al. 14'-hydroxymytoxin B and 16-hydroxyroridin E, two new cytotoxic trichothecenes from Myrothecium roridum. J Nat Prod. 2002;65(5):742-4. [Crossref] [PubMed]
- Antony M, Shukla Y, Janardhanan KK. Protective effect of tenuazonic acid against dimethyl benz(a)antracene-induced skin carcinogenesis in mice. Teratog Carcinog Mutagen. 2002;22(4):309-14. [Crossref] [PubMed]
- Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves Aet al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3):948-56. [Crossref] [PubMed]
- Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343-74. [Crossref] [PubMed] [PMC]
- Giles GI. The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des. 2006;12(34):4427-43. [Crossref] [PubMed]
- Rodrigues MS, Reddy MM, Sattler M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal. 2008;10(10):1813-48. [Crossref] [PubMed]
- Boussabbeh M, Ben Salem I, Prola A, Guilbert A, Bacha H, Abid-Essefi S, et al. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol Sci. 2015;144(2):328-37. [Crossref] [PubMed]
- Ayed-Boussema I, Abassi H, Bouaziz C, Hlima WB, Ayed Y, Bacha H. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environ Toxicol. 2013;28(6):299-306. [Crossref] [PubMed]
- Liu BH, Yu FY, Wu TS, Li SY, Su MC, Wang MC, Shih SM. Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicol Appl Pharmacol. 2003;191(3):255-63. [Crossref] [PubMed]
- Kwon O, Soung NK, Thimmegowda NR, Jeong SJ, Jang JH, Moon DO, et al. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal. 2012;24(4):943-50. [Crossref] [PubMed] [PMC]
- Assunção R, Alvito P, Kleiveland CR, Lea TE. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicol Lett. 2016;250-251:47-56. [Crossref] [PubMed]
- Lu X, Zhang E, Yin S, Fan L, Hu H. Methylseleninic acid prevents patulin-ınduced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress and ınactivation of p53 and MAPKs. J Agric Food Chem. 2017;65(26):5299-305. [Crossref] [PubMed]
- Alam MN, Yu JQ, Beale P, Huq F. Dose and sequence dependent synergism from the combination of oxaliplatin with emetine and patulin against colorectal cancer. Anticancer Agents Med Chem. 2020;20(2):264-73. [Crossref] [PubMed]
- Alam MN, Yu JQ, Beale P, Huq F. Cisplatin in combination with emetine and patulin showed dose and sequence dependent synergism against ovarian cancer. Synergy. 2020;10:100060.[Crossref]
- Abastabar M, Akbari A, Akhtari J, Hedayati MT, Shokohi T, Mehrad-Majd H, et al. In vitro antitumor activity of patulin on cervical and colorectal cancer cell lines. Curr Med Mycol. 2017;3(1):25-9. [Crossref] [PubMed] [PMC]
- Liu BH, Wu TS, Yu FY, Wang CH. Mycotoxin patulin activates the p38 kinase and JNK signaling pathways in human embryonic kidney cells. Toxicol Sci. 2006;89(2):423-30. [Crossref] [PubMed]
- Guo X, Dong Y, Yin S, Zhao C, Huo Y, Fan L, et al. Patulin induces pro-survival functions via autophagy inhibition and p62 accumulation. Cell Death Dis. 2013;4(10):e822. [Crossref] [PubMed] [PMC]
- Ferrer E, Juan-García A, Font G, Ruiz MJ. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol In Vitro. 2009;23(8):1504-9. [Crossref] [PubMed]
- Alves I, Oliveira NG, Laires A, Rodrigues AS, Rueff J. Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: role of ascorbic acid as a modulator of patulin clastogenicity. Mutagenesis. 2000;15(3):229-34. [Crossref] [PubMed]
- Burghardt RC, Barhoumi R, Lewis EH, Bailey RH, Pyle KA, Clement BA, et al. Patulin-induced cellular toxicity: a vital fluorescence study. Toxicol Appl Pharmacol. 1992;112(2):235-44. [Crossref] [PubMed]
- Turkmen NB, Yuce H, Ozek DA, Aslan S, Yasar S, Unuvar S. Dose dependent cytotoxic activity of patulin on neuroblastoma, colon and breast cancer cell line. Ann Med Res. 2021;28(9):1767-70.[Crossref]
- Shin CG, An DG, Song HH, Lee C. Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. J Antibiot (Tokyo). 2009;62(12):687-90. [Crossref] [PubMed]
- Moretti A, Belisario A, Tafuri A, Ritieni A, Corazza L, Logrieco A. Production of beauvericin by different races of Fusarium oxysporum f. sp. melonis, the Fusarium wilt agent of muskmelon. Eur J Plant Pathol. 2002;108(7):661-6. [Crossref]
- Jow GM, Chou CJ, Chen BF, Tsai JH. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: the causative role of calcium. Cancer Lett. 2004;216(2):165-73. [Crossref] [PubMed]
- Tonshin AA, Teplova VV, Andersson MA, Salkinoja-Salonen MS. The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology. 2010;276(1):49-57. [Crossref] [PubMed]
- Lin HI, Lee YJ, Chen BF, Tsai MC, Lu JL, Chou CJ, et al. Involvement of Bcl-2 family, cytochrome c and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells. Cancer Lett. 2005;230(2):248-59. [Crossref] [PubMed]
- Tao YW, Lin YC, She ZG, Lin MT, Chen PX, Zhang JY. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer Agents Med Chem. 2015;15(2):258-66. [Crossref] [PubMed]
- Wu Q, Patocka J, Nepovimova E, Kuca K. A review on the synthesis and bioactivity aspects of beauvericin, a Fusarium mycotoxin. Front Pharmacol. 2018;9:1338. [Crossref] [PubMed] [PMC]
- Mallebrera B, Juan-Garcia A, Font G, Ruiz MJ. Mechanisms of beauvericin toxicity and antioxidant cellular defense. Toxicol Lett. 2016;246:28-34. [Crossref] [PubMed]
- Prosperini A, Juan-García A, Font G, Ruiz MJ. Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicol Lett. 2013;222(2):204-11. [Crossref] [PubMed]
- Dornetshuber R, Heffeter P, Lemmens-Gruber R, Elbling L, Marko D, Micksche M, et al. Oxidative stress and DNA interactions are not involved in Enniatin- and Beauvericin-mediated apoptosis induction. Mol Nutr Food Res. 2009;53(9):1112-22. [Crossref] [PubMed]
- Li Y, Zhang B, He X, Cheng WH, Xu W, Luo Y, et al. Analysis of individual and combined effects of ochratoxin A and zearalenone on HepG2 and KK-1 cells with mathematical models. Toxins (Basel). 2014;6(4):1177-92. [Crossref] [PubMed] [PMC]
- Yip KY, Wan MLY, Wong AST, Korach KS, El-Nezami H. Combined low-dose zearalenone and aflatoxin B1 on cell growth and cell-cycle progression in breast cancer MCF-7 cells. Toxicol Lett. 2017;281:139-51. [Crossref] [PubMed] [PMC]
- Ayers S, Graf TN, Adcock AF, Kroll DJ, Matthew S, Carcache de Blanco EJ, et al. Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships. J Nat Prod. 2011;74(5):1126-31. [Crossref] [PubMed] [PMC]
- Hueza IM, Raspantini PC, Raspantini LE, Latorre AO, Górniak SL. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins (Basel). 2014;6(3):1080-95. [Crossref] [PubMed] [PMC]
- Tadpetch K, Kaewmee B, Chantakaew K, Kantee K, Rukachaisirikul V, Phongpaichit S. Synthesis and cytotoxic activities of semisynthetic zearalenone analogues. Bioorg Med Chem Lett. 2016;26(15):3612-6. [Crossref] [PubMed]
- Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel). 2014;6(5):1615-43. [Crossref] [PubMed] [PMC]
- McCormick SP, Stanley AM, Stover NA, Alexander NJ. Trichothecenes: from simple to complex mycotoxins. Toxins (Basel). 2011;3(7):802-14. [Crossref] [PubMed] [PMC]
- Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: a new tool for cancer therapy. Tumour Biol. 2017;39(2):1010428317692226. [Crossref] [PubMed]
- Woldemichael GM, Turbyville TJ, Vasselli JR, Linehan WM, McMahon JB. Lack of a functional VHL gene product sensitizes renal cell carcinoma cells to the apoptotic effects of the protein synthesis inhibitor verrucarin A. Neoplasia. 2012;14(8):771-7. [Crossref] [PubMed] [PMC]
- Su J, Zhao P, Kong L, Li X, Yan J, Zeng Y, et al. Trichothecin induces cell death in NF-κB constitutively activated human cancer cells via inhibition of IKKβ phosphorylation. PLoS One. 2013;8(8):e71333. [Crossref] [PubMed] [PMC]
- Liu Y, Gao X, Deeb D, Zhang Y, Shaw J, Valeriote FA, et al. Mycotoxin verrucarin A inhibits proliferation and induces apoptosis in prostate cancer cells by inhibiting prosurvival Akt/NF-kB/mTOR signaling. J Exp Ther Oncol. 2016;11(4):251-60. [PubMed]
- Jayasooriya RGPT, Moon DO, Park SR, Choi YH, Asami Y, Kim MO, et al. Combined treatment with verrucarin A and tumor necrosis factor-α sensitizes apoptosis by overexpression of nuclear factor-kappaB-mediated Fas. Environ Toxicol Pharmacol. 2013;36(2):303-10. [Crossref] [PubMed]
- Choudhury SM, Gupta M, Majumder UK. Antineoplastic activities of MT81 and its structural analogue in Ehrlich ascites carcinoma-bearing Swiss Albino mice. Oxid Med Cell Longev. 2010;3(1):61-70. [Crossref] [PubMed] [PMC]
- Gupta M, Majumdar UK, Ray MR, Mukhopadhayay DK. Inhibition of experimental murine tumors by MT81, a new mycotoxin from Penicillium nigricans. Neoplasma. 1997;44(5):329-33. [PubMed]
- Pan XQ, Harday J. Electromicroscopic observations on gliotoxin-induced apoptosis of cancer cells in culture and human cancer xenografts in transplanted SCID mice. In Vivo. 2007;21(2):259-65. [PubMed]
- Kobayashi M, Müllbacher A, Waring P, Hapel AJ. Gliotoxin treatment selectively spares M-CSF- plus IL-3-responsive multipotent haemopoietic progenitor cells in bone marrow. Eur J Haematol. 1991;46(4):205-11. [Crossref] [PubMed]
- Chen J, Lou Q, He L, Wen C, Lin M, Zhu Z, et al. Reduced-gliotoxin induces ROS-mediated anoikis in human colorectal cancer cells. Int J Oncol. 2018;52(3):1023-32. [Crossref] [PubMed]
- Manh Hung LV, Song YW, Cho SK. Effects of the combination of gliotoxin and adriamycin on the adriamycin-resistant non-small-cell lung cancer A549 cell line. Mar Drugs. 2018;16(4):105. [Crossref] [PubMed] [PMC]
- Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13(5):555-62. [Crossref] [PubMed]
- Gilmore AP. Anoikis. Cell Death Differ. 2005;12 Suppl 2:1473-7. [Crossref] [PubMed]
- Nguyen VT, Lee JS, Qian ZJ, Li YX, Kim KN, Heo SJ, et al. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs. 2013;12(1):69-87. [Crossref] [PubMed] [PMC]
- Axelsson V, Holback S, Sjögren M, Gustafsson H, Forsby A. Gliotoxin induces caspase-dependent neurite degeneration and calpain-mediated general cytotoxicity in differentiated human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun. 2006 ;345(3):1068-74. [Crossref] [PubMed]
- Anselmi K, Stolz DB, Nalesnik M, Watkins SC, Kamath R, Gandhi CR. Gliotoxin causes apoptosis and necrosis of rat Kupffer cells in vitro and in vivo in the absence of oxidative stress: exacerbation by caspase and serine protease inhibition. J Hepatol. 2007;47(1):103-13. [Crossref] [PubMed] [PMC]
- Kweon YO, Paik YH, Schnabl B, Qian T, Lemasters JJ, Brenner DA. Gliotoxin-mediated apoptosis of activated human hepatic stellate cells. J Hepatol. 2003;39(1):38-46. [Crossref] [PubMed]
- George Thompson AM, Ursu O, Babkin P, Iancu CV, Whang A, Oprea TI, et al. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation. Sci Rep. 2016;6:24240. [Crossref] [PubMed] [PMC]
- Peterson JR, Mitchison TJ. Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol. 2002;9(12):1275-85. [Crossref] [PubMed]
- Scherlach K, Boettger D, Remme N, Hertweck C. The chemistry and biology of cytochalasans. Nat Prod Rep. 2010;27(6):869-86. [Crossref] [PubMed]
- Trendowski M. Using cytochalasins to improve current chemotherapeutic approaches. Anticancer Agents Med Chem. 2015;15(3):327-35. [Crossref] [PubMed] [PMC]
- Wilson BJ, Harbison RD. Rubratoxins. J Am Vet Med Assoc. 1973;163(11):1274-6. [PubMed]
- Wang T, Zhang Y, Wang Y, Pei YH. Anti-tumor effects of Rubratoxin B on cell toxicity, inhibition of cell proliferation, cytotoxic activity and matrix metalloproteinase-2,9. Toxicol In Vitro. 2007;21(4):646-50. [Crossref] [PubMed]
- Hauser D, Weber HP, Sigg HP. [Isolation and configuration of Chaetocin]. Helv Chim Acta. 1970;53(5):1061-73. [Crossref] [PubMed]
- Yamada A, Kataoka T, Nagai K. The fungal metabolite gliotoxin: immunosuppressive activity on CTL-mediated cytotoxicity. Immunol Lett. 2000;71(1):27-32. [Crossref] [PubMed]
- Ozyerli-Goknar E, Sur-Erdem I, Seker F, Cingöz A, Kayabolen A, Kahya-Yesil Z, et al. The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma. Cell Death Dis. 2019;10(12):894. [Crossref] [PubMed] [PMC]
- Truitt L, Hutchinson C, DeCoteau JF, Geyer CR. Chaetocin antileukemia activity against chronic myelogenous leukemia cells is potentiated by bone marrow stromal factors and overcomes innate imatinib resistance. Oncogenesis. 2014;3(10):e122. [Crossref] [PubMed] [PMC]
- Liu X, Guo S, Liu X, Su L. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells. Apoptosis. 2015;20(11):1499-507. [Crossref] [PubMed]
- Prosperini A, Meca G, Font G, Ruiz MJ. Study of the cytotoxic activity of beauvericin and fusaproliferin and bioavailability in vitro on Caco-2 cells. Food Chem Toxicol. 2012;50(7):2356-61. [Crossref] [PubMed]
- Hoque N, Hasan CM, Rana MS, Varsha A, Sohrab MH, Rahman KM. Fusaproliferin, a fungal mycotoxin, shows cytotoxicity against pancreatic cancer cell lines. Molecules. 2018;23(12):3288. [Crossref] [PubMed] [PMC]
- Voss KA, Porter JK, Bacon CW, Meredith FI, Norred WP. Fusaric acid and modification of the subchronic toxicity to rats of fumonisins in F. moniliforme culture material. Food Chem Toxicol. 1999;37(8):853-61. [Crossref] [PubMed]
- Devnarain N, Tiloke C, Nagiah S, Chuturgoon AA. Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon. 2017;126:4-11. [Crossref] [PubMed]
- Fernandez-Pol JA, Klos DJ, Hamilton PD. Cytotoxic activity of fusaric acid on human adenocarcinoma cells in tissue culture. Anticancer Res. 1993;13(1):57-64. [PubMed]
- Mamur S, Ünal F, Yılmaz S, Erikel E, Yüzbaşıoğlu D. Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug Chem Toxicol. 2020;43(2):149-57. [Crossref] [PubMed]
- Ghazi T, Nagiah S, Chuturgoon AA. Fusaric acid decreases p53 expression by altering promoter methylation and m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics. 2021;16(1):79-91. [Crossref] [PubMed] [PMC]
.: Process List