Matriks metalloproteinaz (MMP)lar kalsiyum ve çinko bağımlı proteolitik enzim ailesidir. Bu ailenin bir üyesi olan MMP-2 ve MMP9 jelatini, tip IV, V, VII ve X kollajeni parçalayan tip IV kollajenazlardır. MMP-2 fibroblastlar, endotel hücreleri ve osteoblastlar; MMP-9 inflamatuar hücreler, tümör hücreleri, keratinositler ve epitel hücreleri tarafından sentezlenmektedir. Jelatinazlar, zimojen olarak salgılanırlar ve prodomainlerin bölünmesi ile aktif formlarına dönüşürler. MMP-2 ve MMP-9, meme kanseri hücrelerinde proliferasyon, migrasyon, invazyon ve metastaza yol açmaktadır. Hem MMP-2'nin hem de MMP9'un, meme kanseri tedavisine yönelik olarak polimorfizmlerini ve ekspresyonlarını/aktivitelerini araştıran çalışmalar bulunmaktadır. Meme kanseri progresyonu ve metastazındaki önemli rolleri nedeni ile bu enzimlerin ortak fonksiyonel polimorfizmlerinin, hasta sağkalımını da içeren fenotipik özellikleriyle meme kanseri gelişimine katkıda bulunduğu bildirilmektedir. Di-2-Etilheksilfitalat, PAX6, hücresel prion proteini, natriüretik peptid reseptörü A, aktif lökosit hücre adezyon molekülü, EZH2, eGFR'nin ligand EGF ile etkileşimi, integrin ve integrin olmayan reseptörlerle etkileşim, TF-FVIIa/tripsin aracılı proteaz ile reseptör 2'nin aktivasyonu ile MMP-2 ve/veya MMP-9'un ekspresyonunun arttığı gösterilmektedir. Meme kanserinde invazyon ve metastaz üzerindeki etkileri nedeni ile potansiyel tedavi hedefi olarak MMP-2 ve MMP-9'u inhibe etmeye yönelik olarak Alisol A, Casticin, Orientin, Luteolin ve [15]pyN5 ve [16]pyN5 üzerinde yapılan çalışmalar bulunmaktadır. Bu derlemede, meme kanserinde MMP-2 ve MMP-9'un rolü, polimorfizmleri, bu enzimlerin ekspresyonunu/aktivitesini artıran etkileşimleri, moleküller ile inhibisyonları incelenecek ve son yıllarda yapılan çalışmalar sunulacaktır.
Anahtar Kelimeler: Matriks metalloproteinaz; jelatinaz; MMP-2; MMP-9; meme kanseri
Matrix metalloproteinases (MMPs) are a family of calcium and zinc-dependent proteolytic enzymes. MMP-2 and MMP-9 are members of this family; type IV collagenases which degrade gelatin, types IV, V, VII and X collagen. MMP-2 is synthesized by fibroblasts, endothelial cells and osteoblasts, MMP-9 is synthesized by inflammatory cells, tumor cells, keratinocytes and epithelial cells. Gelatinases are secreted as inactive zymogens and turn into active forms by dividing prodomains. MMP-2 and MMP-9 cause proliferation, migration, invasion and metastasis in breast cancer cells. There are studies investigating the polymorphisms and expressions/activities of both MMP-2 and MMP-9 for breast cancer treatment. Due to their important role in breast cancer progression and metastasis, common functional polymorphisms of these enzymes have been reported to contribute to breast cancer development with their phenotypic properties, including patient survival. Di-2-Ethylhexylphthalate, PAX6, cellular prion protein, Natriuretic peptide receptor A, active leukocyte cell adhesion molecule, EZH2, interaction of eGFR with ligand EGF, interaction with integrin and non-integrin receptors, with TFFVIIa / trypsin mediated protease of receptor 2 activation is shown to increase expression of MMP-2 and / or MMP-9. There are studies on Alisol A, Casticin, Orientin, Luteolin and [15] pyN5 and [16] pyN5 to inhibit MMP-2 and MMP-9 as potential treatment targets due to their effects on invasion and metastasis in breast cancer. In this review, in breast cancer MMP-2 and MMP-9 role, polymorphisms, interactions that increase the expression / activity of these enzymes, and their inhibition with molecules will be presented and studies conducted in recent years will be presented.
Keywords: Matrix metalloproteinase; gelatinase: MMP-2; MMP-9; breast cancer
- Scherer S, De Souza TB, De Paoli J, Brenol CV, Xavier RM, Brenol JC, et al. Matrix metalloproteinase gene polymorphisms in patients with rheumatoid arthritis. Rheumatol Int. 2010;30(3):369-73. [Crossref] [PubMed]
- Djurić T, Stojković L, Zivković M, Končar I, Stanković A, Djordjević A, Alavantić D. Matrix metalloproteinase-1 promoter genotypes and haplotypes are associated with carotid plaque presence. Clin Biochem. 2012;45(16-17):1353-6. [Crossref] [PubMed]
- Zivković M, Djurić T, Dincić E, Raicević R, Alavantić D, Stanković A. Matrix metalloproteinase-9 −1562 C/T gene polymorphism in Serbian patients with multiple sclerosis. J Neuroimmunol. 2007;189(1-2):147-50. [Crossref] [PubMed]
- Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K. Structural properties of matrix metalloproteinases. Cell Mol Life Sci. 1999;55(4):639-52. [Crossref] [PubMed]
- Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491-4. [Crossref] [PubMed]
- Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463-516. [Crossref] [PubMed] [PMC]
- Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008;29(5):290-308. [Crossref] [PubMed] [PMC]
- Gill SE, Kassim SY, Birkland TP, Parks WC. Mouse models of MMP and TIMP function. Methods Mol Biol. 2010;622:31-52. [Crossref] [PubMed]
- Itoh Y, Ito N, Nagase H, Evans RD, Bird SA, Seiki M. Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell. 2006;17(12):5390-9. [Crossref] [PubMed] [PMC]
- Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995;375(6528):244-7. [Crossref] [PubMed]
- Pei D, Weiss SJ. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem. 1996;271(15):9135-40. [Crossref] [PubMed]
- Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2015;2(1):26-34. [Crossref] [PubMed] [PMC]
- Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta. 2012;1825(1):29-36. [Crossref] [PubMed]
- Agnieszka Jezierska, Tomasz Motyl. Matrix Metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit. 2009;15(2):RA32-40. [PubMed]
- Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1803(1):20-8. [Crossref] [PubMed]
- Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(2):201-12. [Crossref] [PubMed] [PMC]
- Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J. 1995;309(Pt 1):299-306. [Crossref] [PubMed] [PMC]
- Duffy MJ, Maguire TM, Hill A, McDermott E, O'Higgins N. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2000;2(4):252-7. [Crossref] [PubMed] [PMC]
- Davies KJ. The complex ınteraction of matrix metalloproteinases in the migration of cancer cells through breast tissue stroma. Int J Breast Cancer. 2014;839094. [Crossref] [PubMed] [PMC]
- Chakrabarti S, Patel KD. Matrix metalloproteinase-2 (MMP-2) and MMP-9 In pulmonary pathology. Exp Lung Res. 2005;31(6):599-621. [Crossref] [PubMed]
- Rouet-Benzineb P, Buhler JM, Dreyfus P, Delcourt A, Dorent R, Perennec J, et al. Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation. Eur J Heart Fail. 1999;1(4):337-52. [Crossref] [PubMed]
- Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9-34. [Crossref] [PubMed]
- Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101(4):816-29. [Crossref] [PubMed]
- Feller L, Kramer B, Lemmer J. Pathobiology of cancer metastasis: a short account. Cancer Cell Int. 2012;12:24. [Crossref] [PubMed] [PMC]
- Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271-90. [Crossref] [PubMed] [PMC]
- Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer, J Clin Oncol. 2009;27(31):5287-97. [Crossref] [PubMed] [PMC]
- Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie. 2005;87(3-4):287-97. [Crossref] [PubMed]
- Yu XF, Han ZC. Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol Histopathol. 2006;21(5):519-31. [PubMed]
- Rydlova M, Holubec Jr L, Ludvikova Jr. M, Kalfert D, Franekova J, Povysil C, et al. Biological activity and clinical implications of the matrix metalloproteinases. Anticancer Res. 2008;28(2B):1389-97. [PubMed]
- Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer. 1999;79(11-12):1828-35. [Crossref] [PubMed] [PMC]
- Murnane MJ, Cai J, Shuja S, McAneny D, Klepeis V, Willett JB. Active MMP-2 effectively identifies the presence of colorectal cancer. Int J Cancer. 2009;125(12):2893-902. [Crossref] [PubMed] [PMC]
- Jiyon L, Park SH, Lee J, Chun H, Choi MK, Yoon JH, et al. Differential effects of luteolin and its glycosides on invasion and spoptosis in MDA-Mb-231 triple-negative breast cancer cells. EXCLI J. 2019;18:750-63. [PubMed]
- Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel). 2018;18(10):3249. [Crossref] [PubMed] [PMC]
- Peng WJ, Yan JW, Wan YN, Wang BX, Tao JH, Yang GJ, et al. Matrix metalloproteinases: a review of their structure and role in systemic sclerosis. Clin Immunol. 2012;32(6):1409-14. [Crossref] [PubMed]
- Mendes O, Kim HT, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis. 2005;22(3):237-46. [Crossref] [PubMed]
- Jezierska A, Matysiak W, Motyl T. ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy. Med Sci Monit. 2006;12(8):63-73. [PubMed]
- Delgado-Enciso I, Cepeda-Lopez FR, Monrroy-Guizar EA, Bautista-Lam JR, Andrade-Soto M, Jonguitud-Olguin G, et al. Matrix metalloproteinase-2 promoter polymorphism is associated with breast cancer in a Mexican population. Gynecol Obstet Invest. 2008;65(1):68-72. [Crossref] [PubMed]
- Fabienne G, Li WQ, Iacopetta B. Genetic polymorphisms in the MMP-2 and MMP-9 genes and breast cancer phenotype. Breast Cancer Res Treat. 2004;88(3):197-204. [Crossref] [PubMed]
- Rahimi Z, Yari K, Rahimi Z. Matrix metalloproteinase-9 -1562T allele and its combination with MMP-2 -735 C allele are risk factors for breast cancer. Asian Pac J Cancer Prev. 2015;16:1175-9. [Crossref] [PubMed]
- Zhang X, Jin G, Li J, Zhang L. Association between four MMP-9 polymorphisms and breast cancer risk: a meta-analysis. Med Sci Monit. 2015;19(21):1115-23. [Crossref] [PubMed] [PMC]
- Merdad A, Karim S, Schulten HJ, Dallo A, Buhmeida A, Al-Thubaity F, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer ınvasion and metastasis. Anticancer Research. 2014;34(3):1355-66. [PubMed]
- Przybylowska K, Kluczna A, Zadrozny M, Krawczyk T, Kulig A, Rykala J, et al. Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer. Breast Cancer Res Treat. 2006;95(1):65-72. [Crossref] [PubMed]
- Patel S, Sumitra G, Koner BC, Saxena A. Role of serum matrix metalloproteinase-2 and -9 to predict breast cancer progression. Clin Biochem. 2011;44(10-11):869-72. [Crossref] [PubMed]
- Zhang S, Ma J, Fu Z, Zhang Z, Cao J, Huang L, et al. Promotion of breast cancer cells MDA-MB-231 invasion by di(2-ethylhexyl)phthalate through matrix metalloproteinase-2/-9 overexpression. Environ Sci Pollut Res Int. 2016;23(10):9742-9. [Crossref] [PubMed]
- Majumder A, Ray S, Banerji A. Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells. Mol Cell Biochem. 2019;452(1-2):111-21. [Crossref] [PubMed]
- Dasa K, Prasada R, Ansaria SA, Roya A, Mukherjeeb A, Sen P. Matrix metalloproteinase-2: a key regulator in coagulation proteases mediated human breast cancer progression through autocrine signaling. Biomed Pharmacother. 2018;105:395-406. [Crossref] [PubMed]
- Urrutia G, Laurito S, Campoy E, Nasif D, Branham MT, Roqué M. PAX6 Promoter Methylation Correlates with MDA-MB-231 Cell Migration, and Expression of MMP-2 and MMP-9. Asian Pac J Cancer Prev. 2018;19(10):2859-2866. [PubMed]
- Gil M, Kim YK, Kim KE, Kim W, Park CS, Lee KJ. Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity. Biochem Biophys Res Commun. 2016;470(1):213-9. [Crossref] [PubMed]
- Qu J, Zhao X, Liu X, Sun Y, Wang J, Liu L, et al. Natriuretic peptide receptor a promotes breast cancer development by upregulating MMP-9. Am J Cancer Res. 2019;9(7):1415-28. [PubMed]
- Zaremba-Czogallaa M, Hryniewicz-Jankowskab A, Tabola R, Nienartowicza M, Stachc K, Wierzbickid J, et al. A novel regulatory function of CDKN1A/p21 in TNFα-induced matrix metalloproteinase 9-dependent migration and invasion of triple-negative breast cancer cells. Cell Signal. 2018;47:27-36. [Crossref] [PubMed]
- Wang G, Zeng Y, Chen S, Li D, Li W, Zhou Y, et al. Localization of TFPI-2 in the nucleus modulates MMP-2 gene expression in breast cancer cells. Sci Rep. 2017;7(1):13575. [Crossref] [PubMed] [PMC]
- Jezierska A, Olszewski WP, Pietruszkiewicz J, Olszewski W, Matysiak W, Moty T. Activated Leukocyte Cell Adhesion Molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Med Sci Monit. 2006;12(7):BR245-56. [PubMed]
- Lai XX, Li G, Lin B, Yang H. Interference of Notch 1 inhibits the proliferation and invasion of breast cancer cells: Involvement of the β-catenin signaling pathway. Mol Med Rep. 2018;17(2):2472-8. [Crossref] [PubMed]
- Chien YC, Liu LC, Ye HY, Wu JY, Yu YL. EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am J Cancer Res. 2018;8(3):422-34. [PubMed]
- Lou C, Xu X, Chen Y, Zhao H. Alisol A suppresses proliferation, migration, and ınvasion in human breast cancer MDA-MB-231 cells. Molecules. 2019;24(20):3651. [Crossref] [PubMed] [PMC]
- Fan L, Zhang Y, Zhou Q, Liu Y, Gong B, Lü J, et al. Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway. Biosci Rep. 2018;38(6):BSR20180738. [Crossref] [PubMed] [PMC]
- Proença S, Antunes B, Guedes RC, Ramilo-Gomes F, Cabral MF, Costa J et al. Pyridine-containing macrocycles display MMP-2/9 inhibitory activity and distinct effects on migration and invasion of 2D and 3D breast cancer models. Int J Mol Sci. 2019;20(20):5109. [Crossref] [PubMed] [PMC]
- Besli N, Yenmis G, Tunçdemir M, Sarac EY, Doğan S, Solakoğlu S, et al. Metformin suppresses the proliferation and invasion through NF-κB and MMPs in MCF-7 cell line. Turkish Journal of Biochemistry. 2019;45(3):122-32. [Crossref]
- Kim SJ, Pham TH, Bak Y, Ryu HW, Oh SR, Yoon DY. Orientin inhibits invasion by suppressing MMP-9 and IL-8 expression via the PKCα/ ERK/AP-1/STAT3-mediated signaling pathways in TPA-treated MCF7 breast cancer cells. Phytomedicine. 2018;50:35-42. [Crossref] [PubMed]
.: Process List