Bitkiler, çeşitli zengin biyoaktif bileşenleri sayesinde birçok hastalığın önlenmesi ve tedavisi için binlerce yıldır kullanılmakta olup, günümüzde de dünya çapında nüfusun büyük çoğunluğu için en önemli doğal sağlık kaynağıdır. Tıbbi bitkilerin hiperlipidemi, diyabet ve kardiyovasküler hastalıklar gibi farklı hastalıkları tedavi etmek için kullanımı son yıllarda popülerlik kazanmıştır. Hiperlipidemi, yaygın görülen bir hastalık olup, dünya çapında önemli bir morbidite ve mortalite nedeni olan kardiyovasküler hastalıklar için mühim bir risk faktörüdür. Hiperlipidemi tedavisinde 1. basamakta tercih edilen statin grubu ilaçlar; kas ağrısı, güçsüzlük ve depresyon insidansında artışla ilişkilendirilir. Mevcut lipid düşürücü ilaçların istenmeyen etkilerinin fazlalığı, geleneksel ve alternatif tedavilere yönelme eğilimini artırmıştır. Son zamanlarda yapılan çalışmalarda, antihiperlipidemik özelliklere sahip tıbbi bitkilerin varlığı gösterilmiştir. Çeşitli bitki türleri, içeriğindeki vitaminler, flavonoidler, steroller ve antioksidanlar dâhil olmak üzere pek çok bileşik sayesinde farklı yollarla serum lipid profilini potansiyel olarak azaltabilir. Tıbbi bitkilerin, lipid düşürücü etki mekanizmaları net olmamakla birlikte enterositlerde kolesterol emiliminin engellenmesi, endojen lipidlerin biyosentezinin azaltılması, karaciğerde kolesterol atılımının teşvik edilmesi ve lipid metabolizmasıyla ilgili transkripsiyon faktörlerinin düzenlenmesi en muhtemel mekanizmalar olarak görülmektedir. Bununla birlikte bitkisel ürünlerin kullanımı tamamen güvenli değildir ve organ toksisitesi, alerjik reaksiyonlar ve bitki-ilaç etkileşimleri dâhil çeşitli istenmeyen etkilere neden olabilir. Bu derleme kapsamında, lipid metabolizması üzerine düzenleyici etkileri olduğu iddia edilen farklı bitkiler, bu bitkilerin etkileri ve olası toksik etkilerinin değerlendirilmesi amaçlanmıştır.
Anahtar Kelimeler: Lipid metabolizması; istenmeyen etki; bitkisel
Plants are being used for thousands of years for the prevention and treatment of many diseases, and are still the most important natural health resource for the vast majority of the population worldwide. The use of medicinal plants to treat different diseases such as hyperlipidemia, diabetes and cardiovascular diseases has gained popularity in recent years. Hyperlipidemia is a common disease and an important risk factor for cardiovascular diseases, an important cause of morbidity and mortality worldwide. Statin group drugs, which are preferred as first-line therapy for hyperlipidemia are associated with an increased incidence of muscle pain, weakness, and depression. The adverse effects of existing lipid-lowering drugs have increased the trend towards traditional and alternative therapies. Recently, a growing number of studies have demonstrated the presence of medicinal plants with antihyperlipidemic properties. Various plant species can potentially reduce the serum lipid profile in different ways, due to many compounds, including vitamins, flavonoids, sterols, and antioxidants. Although the lipid-lowering effect mechanisms of medicinal plants are unclear, the most likely mechanisms are inhibition of cholesterol absorption in enterocytes, reduction of biosynthesis of endogenous lipids, promotion of cholesterol excretion in the liver, and regulation of lipid metabolism transcription factors. However, the use of herbal products is not completely safe and can cause a variety of adverse effects, including organ toxicity, allergic reactions, and herb-drug interactions. In this review, it is aimed to evaluate different plants that claim to have regulatory effects on lipid metabolism, their effects and possible toxic effects.
Keywords: Lipid metabolism; adverse effect; herbal
- Morales-González JA, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Valadez-Vega MDC, Álvarez-González I, et al. Garlic (Allium sativum L.): a brief review of its antigenotoxic effects. Foods. 2019;8(8):343. [Crossref] [PubMed] [PMC]
- Gardner CD, Messina M, Lawson LD, Farquhar JW. Soy, garlic, and ginkgo biloba: their potential role in cardiovascular disease prevention and treatment. Curr Atheroscler Rep. 2003;5(6):468-75. [Crossref] [PubMed]
- Handral HK, Pandith A, Sd S. A review on Murraya koenigii: multipotential medicinal plant. Asian J Pharm Clin Res. 2012;5(4):5-14. [Link]
- Hajimonfarednejad M, Ostovar M, Raee MJ, Hashempur MH, Mayer JG, Heydari M. Cinnamon: a systematic review of adverse events. Clin Nutr. 2019;38(2):594-602. [Crossref] [PubMed]
- Izzo AA, Hoon-Kim S, Radhakrishnan R, Williamson EM. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother Res. 2016;30(5):691-700. [Crossref] [PubMed]
- Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2014;28(12):1770-7. [Crossref] [PubMed]
- Ried K, Toben C, Fakler P. Effect of garlic on serum lipids: an updated meta-analysis. Nutr Rev. 2013;71(5):282-99. [Crossref] [PubMed]
- Yadav SP, Vats V, Ammini AC, Grover JK. Brassica juncea (Rai) significantly prevented the development of insulin resistance in rats fed fructose-enriched diet. J Ethnopharmacol. 2004;93(1):113-6. [Crossref] [PubMed]
- Joshi SC, Sharma N, Sharma P. Antioxidant and lipid lowering effects of Coriandrum sativum in cholesterol fed rabbits. Int J Pharm Pharm Sci. 2012;4(3):231-4. [Link]
- Asgarpanah J, Mohajerani R. Phytochemistry and pharmacologic properties of Urtica dioica L. Journal of Medicinal Plants Research. 2012;6(46):5714-9. [Link]
- Joshi BC, Mukhija M, Kalia AN. Pharmacognostical review of Urtica dioica L. Int J Green Pharm. 2014;8(4):201-9. [Crossref]
- Upton R. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J Herb Med. 2013;3(1):9-38. [Crossref]
- Daher CF, Baroody KG, Baroody GM. Effect of Urtica dioica extract intake upon blood lipid profile in the rats. Fitoterapia. 2006;77(3):183-8. [Crossref] [PubMed]
- Nassiri-Asl M, Zamansoltani F, Abbasi E, Daneshi MM, Zangivand AA. Effects of Urtica dioica extract on lipid profile in hypercholesterolemic rats. Chin J Integr Med. 2009;7(5):428-33. [PubMed]
- Esposito S, Bianco A, Russo R, Di Maro A, Isernia C, Pedone PV. Therapeutic perspectives of molecules from Urtica dioica extracts for cancer treatment. Molecules. 2019;24(15): 2753. [Crossref] [PubMed] [PMC]
- Uslu S, Bulbul A, Diler B, Bas EK, Nuhoglu A. Urticaria due to Urtica dioica in a neonate. Eur J Pediatr. 2011;170(3):401-3. [Crossref] [PubMed]
- Chrubasik JE, Roufogalis BD, Wagner H, Chrubasik S. A comprehensive review on the stinging nettle effect and efficacy profiles. Part II: urticae radix. Phytomedicine. 2007;14(7-8):568-79. [Crossref] [PubMed]
- Paoletti A, Gallo E, Benemei S, Vietri M, Lapi F, Volpi R, et al. Interactions between natural health products and oral anticoagulants: spontaneous reports in the Italian Surveillance System of Natural Health Products. Evid Based Complement Alternat Med. 2011;2011:612 150. [Crossref] [PubMed] [PMC]
- Arslanoglu SF, Aytac S. The important of flax (Linum usitatissimum L.) in terms of health. Int J Life Sci Biotecnology. 2020;3(1):95-107. [Link]
- Khalesi S, Jamaluddin R, Ismail A. Effect of raw and heated flaxseed (Linum usitatissimum L.) on blood lipid profiles in rats. Int J Appl Sci Technol. 2011;1(4):84-9. [Link]
- Lucas EA, Lightfoot SA, Hammond LJ, Devareddy L, Khalil DA, Daggy BP, et al. Flaxseed reduces plasma cholesterol and atherosclerotic lesion formation in ovariectomized Golden Syrian hamsters. Atherosclerosis. 2004;173(2):223-9. [Crossref] [PubMed]
- Pan A, Yu D, Demark-Wahnefried W, Franco OH, Lin X. Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr. 2009;90(2):288-97. [Crossref] [PubMed] [PMC]
- Verma R, Prasad R, Gupta A. Functional properties and health benefits in flaxseed fiber and oil (Linum usitatissimum L.). Int J Home Sci. 2017;3(1):368-9. [Link]
- ESCOP [İnternet]. Copyright © 1999-2020 ESCOP [Erişim tarihi: 30.1.2021]. Table of herb-drug interactions based on the monographs of ESCOP. Erişim linki: [Link]
- Community Herbal Monograph on Linum usitatissimum L., Semen. London: 2006. Doc. Ref: EMEA/HMPC/340849/2005. Erişim tarihi: 30.1.2021. Erişim linki: [Link]
- Cardoso Carraro JC, de Souza Dantas MI, Espeschit ACR, Martino HSD, Ribeiro SMR. Flaxseed and human health: reviewing benefits and adverse effects. Food Rev Int. 2012;28(2):203-30. [Crossref]
- Coşkuner Y, Karababa E. Physical properties of coriander seeds (Coriandrum sativum L.). Journal of Food Engineering. 2007;80(2):408-16. [Crossref]
- Mandal S, Mandal M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac J Trop Biomed. 2015;5(6):421-8. [Crossref]
- Chithra V, Leelamma S. Hypolipidemic effect of coriander seeds (Coriandrum sativum): mechanism of action. Plant Foods Hum Nutr. 1997;51(2):167-72. [Crossref] [PubMed]
- Burdock GA, Carabin IG. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem Toxicol. 2009;47(1):22-34. [Crossref] [PubMed]
- Asgarpanah J, Kazemivash N. Phytochemistry, pharmacology and medicinal properties of Coriandrum sativum L. Afr J Pharm Pharmacol. 2012;6(31): 2340-5. [Crossref]
- Heibatullah K, Marzieh P, Arefeh I, Ebrahim M. Genotoxicity determinations of coriander drop and extract of Coriander sativum cultured fibroblast of rat embryo by comet assay. Saudi Pharm J. 2008;16(1):85-8. [Link]
- Mahmoud I, Alkofahi A, Abdelaziz A. Mutagenic and toxic activities of several spices and some Jordanian medicinal plants. Pharm Biol. 1992; 30(2):81-5. [Crossref]
- Peter EL, Deyno S, Mtewa A, Kasali FM, Nagendrappa PB, Sesaazi D, et al. Safety and efficacy of Momordica charantia Linnaeus in pre-diabetes and type 2 diabetes mellitus patients: a systematic review and meta-analysis protocol. Syst Rev. 2018;192. [Crossref] [PubMed] [PMC]
- Khan MF, Abutaha N, Nasr FA, Alqahtani AS, Noman OM, Wadaan MAM. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. BMC Complement Altern Med. 2019;19(1):184. [Crossref] [PubMed] [PMC]
- Wang S, Li Z, Yang G, Ho CT, Li S. Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food Funct. 2017;8(5):1749-62. [Crossref] [PubMed]
- Jia S, Shen M, Zhang F, Xie J. Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci. 2017;18(12):2555. [Crossref] [PubMed] [PMC]
- Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol. 2004; 93(1):123-32. [Crossref] [PubMed]
- Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine. 1996;2(4): 349-62. [Crossref] [PubMed]
- Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr. 2009;102(12): 1703-8. [Crossref] [PubMed]
- Temitope AG, Lekan OS. Effect of Momordica charantia (Bitter Melon) leaves on haemoglobin concentration in male albino rats. Int Blood Res Rev. 2014;2(2):82-6. [Crossref]
- Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front Pharmacol. 2019;10:486. [Crossref] [PubMed] [PMC]
- Singh VK, Singh DK. Pharmacological effects of garlic (Allium sativum L.). Annu Rev Biomed Sci. 2008;10:6-26. [Crossref]
- Borrelli F, Capasso R, Izzo AA. Garlic (Allium sativum L.): adverse effects and drug interactions in humans. Mol Nutr Food Res. 2007;51(11):1386-97. [Crossref] [PubMed]
- Block E. The organosulfur chemistry of the genus Allium-implications for the organic chemistry of sulfur. Angew Chem Int Ed Engl. 1992;31(9): 1135-78. [Crossref]
- Gebhardt R. Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids. 1993;28(7):613-9. [Crossref] [PubMed]
- Kojuri J, Vosoughi AR, Akrami M. Effects of anethum graveolens and garlic on lipid profile in hyperlipidemic patients. Lipids Health Dis. 2007;6:5. [Crossref] [PubMed] [PMC]
- Parish RA, McIntire S, Heimbach DM. Garlic burns: a naturopathic remedy gone awry. Pediatr Emerg Care. 1987;3(4):258-60. [Crossref] [PubMed]
- Jappe U, Bonnekoh B, Hausen BM, Gollnick H. Garlic-related dermatoses: case report and review of the literature. Am J Contact Dermat. 1999;10(1):37-9. [Crossref] [PubMed]
- Dausch JG, Nixon DW. Garlic: a review of its relationship to malignant disease. Prev Med. 1990;19(3):346-61. [Crossref] [PubMed]
- Jani A, Mehta A. Pharmacology of Allium sativum in relation to Cytochrome P450 and possible drug interactions. Pharmacogn Rev. 2007;1(2):222-6. [Link]
- Hammami I, El May MV. Impact of garlic feeding (Allium sativum) on male fertility. Andrologia. 2013;45(4):217-24. [Crossref] [PubMed]
- Dugoua JJ, Seely D, Perri D, Cooley K, Forelli T, Mills E, et al. From type 2 diabetes to antioxidant activity: a systematic review of the safety and efficacy of common and cassia cinnamon bark. Can J Physiol Pharmacol. 2007;85(9):837-47. [Crossref] [PubMed]
- Ranasinghe P, Jayawardena R, Pigera S, Wathurapatha WS, Weeratunga HD, Premakumara GAS, et al. Evaluation of pharmacodynamic properties and safety of Cinna momum zeylanicum (Ceylon cinnamon) in healthy adults: a phase I clinical trial. BMC Complement Altern Med. 2017;17(1):550. [Crossref] [PubMed] [PMC]
- Rafehi H, Ververis K, Karagiannis TC. Controversies surrounding the clinical potential of cinnamon for the management of diabetes. Diabetes Obes Metab. 2012;14(6):493-9. [Crossref] [PubMed]
- Oliveira Jde A, da Silva IC, Trindade LA, Lima EO, Carlo HL, Cavalcanti AL, et al. Safety and Tolerability of essential oil from Cinnamomum zeylanicum Blume leaves with action on oral candidosis and its effect on the physical properties of the acrylic resin. Evid Based Complement Alternat Med. 2014;2014:325670. [Crossref] [PubMed] [PMC]
- Ranasinghe P, Perera S, Gunatilake M, Abeywardene E, Gunapala N, Premakumara S, et al. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy Res. 2012;4(2):73-9. [PubMed] [PMC]
- Maierean SM, Serban MC, Sahebkar A, Ursoniu S, Serban A, Penson P, et al; Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. The effects of cinnamon supplementation on blood lipid concentrations: A systematic review and meta-analysis. J Clin Lipidol. 2017;11(6):1393-406. [Crossref] [PubMed]
- Akilen R, Tsiami A, Robinson N. Efficacy and safety of 'true' cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med. 2013;30(4):505-6. [Crossref] [PubMed]
- De Benito V, Alzaga R. Occupational allergic contact dermatitis from cassia (Chinese cinnamon) as a flavouring agent in coffee. Contact Derm. 1999;40(3):165. [Crossref] [PubMed]
- Isaac-Renton M, Li MK, Parsons LM. Cinnamon spice and everything not nice: many features of intraoral allergy to cinnamic aldehyde. Dermatitis. 2015;26(3):116-21. [Crossref] [PubMed]
- Nadiminti H, Ehrlich A, Udey MC. Oral erosions as a manifestation of allergic contact sensitivity to cinnamon mints. Contact Derm. 2005;52(1):46-7. [Crossref] [PubMed]
- Hoskyn J, Guin JD. Contact allergy to cinnamal in a patient with oral lichen planus. Contact Derm. 2005;52(3):160-1. [Crossref] [PubMed]
- Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, et al. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest. 2006;36(5):340-4. [Crossref] [PubMed]
- Patil BS, Jayaprakasha GK, Chidambara Murthy KN, Vikram A. Bioactive compounds: historical perspectives, opportunities, and challenges. J Agric Food Chem. 2009;57(18): 8142-60. [Crossref] [PubMed]
- Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57(13):2889-95. [Crossref] [PubMed]
- Zhang W, Liu D, Wo X, Zhang Y, Jin M, Ding Z. Effects of Curcuma Longa on proliferation of cultured bovine smooth muscle cells and on expression of low density lipoprotein receptor in cells. Chin Med J (Engl). 1999;112(4):308-11. [PubMed]
- Neerati P, Devde R, Gangi AK. Evaluation of the effect of curcumin capsules on glyburide therapy in patients with type-2 diabetes mellitus. Phytother Res. 2014;28(12):1796-800. [Crossref] [PubMed]
- Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161-8. [Crossref] [PubMed]
- Nagpal M, Sood S. Role of curcumin in systemic and oral health: An overview. J Nat Sci Biol Med. 2013;4(1):3-7. [Crossref] [PubMed] [PMC]
- Vaughn AR, Branum A, Sivamani RK. Effects of turmeric (Curcuma longa) on skin health: a systematic review of the clinical evidence. Phytother Res. 2016;30(8):1243-64. [Crossref] [PubMed]
- Calapai G, Miroddi M, Minciullo PL, Caputi AP, Gangemi S, Schmidt RJ. Contact dermatitis as an adverse reaction to some topically used European herbal medicinal products - part 1: Achillea millefolium-Curcuma longa. Contact Derm. 2014;71(1):1-12. [Crossref] [PubMed]
- Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors. 2013;39(1):2-13. [Crossref] [PubMed]
- Jiao Y, Wilkinson J 4th, Di X, Wang W, Hatcher H, Kock ND, et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood. 2009;113(2):462-9. [Crossref] [PubMed] [PMC]
- Devassy JG, Nwachukwu ID, Jones PJ. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev. 2015;73(3):155-65. [Crossref] [PubMed]
.: Process List