Restoratif diş hekimliğinde yaygın olarak kullanılan kompozit rezinler, günümüzde gelişen teknoloji sayesinde birçok yenilikler içermektedirler. Bu gelişmeler kapsamlı klinik ve laboratuvar testleriyle değerlendirilirken, günümüz standartlarıyla kıyaslamalar yapılmaktadır. Kompozit rezin materyallerin mekanik ve fiziksel özelliklerini etkileyen önemli faktörlerden olan polimerizasyon özellikleri bu materyallere ait araştırmaların temel konularındandır. Kompozit rezinlerin başarısını tahmin etmede in vivo çalışmaların gerçekleştirme zorluğu ve yüksek maliyet gerektirmeleri sebebiyle in vitro çalışmalar daha sık tercih edilmektedir. Polimerizasyon etkinliği kapsamında incelenen özellikler; polimerizasyon büzülmesi ve stresleri, dönüşüm derecesi ve polimerizasyon derinliği gibi parametreleri kapsamaktadır. Bu parametrelerden polimerizasyon büzülmesi ve streslerinin incelemesinde tensilometre, tensometre, çatlak analizi, koordinat ölçme cihazı (coordinate measuring machine), optik koherens tomografisi ve dijital görüntü korelasyonu (digital image correlation-DIC) yöntemleri kullanılmaktadır. Polimerizasyon derecesinin incelendiği yöntemler arasında civalı dilatometre, bonded disk, AcuVol ve "Managing Accurate Resin Curing (MARC)" yer almaktadır. Yüksek performanslı sıvı kromatografisi ve "Fourier dönüşümlü kızılötesi spektroskopisi (FTIR)" artık monomer analiz yöntemleri kapsamında değerlendirilmiştir. Kazıma (scraping) ve penetrasyon yöntemleri ise polimerizasyon derinliğinin belirlenmesinde kullanılmaktadır. Bu parametrelerin yanında, piknometre ve termal analizler olarak da diferansiyel tarama kalorimetresi (Differential Scanning Calorimetry-DSC) ve termogravimetrik analiz literatürde yer alan analizlerdir. Bu çalışmada, öne çıkan polimerizasyon nitelikleri ve analiz yöntemlerine ait güncel bilgilerin sunulması amaçlanmıştır.
Anahtar Kelimeler: Polimerizasyon; kompozit rezin; analiz yöntemleri
Due to recent developments in today?s technology there are many innovations regarding composite resins which are the most commonly used materials in restorative dentistry. These advances are investigated through clinical trials and laboratory tests, being compared with available standards. Polymerization properties of composite resins, one of the most important factors regarding material's mechanical and physical qualities, are essential study subjects in the literature. In vitro studies are often preferred in order to predict the composite resin materials success, in compare to in vivo trials because of their practical difficulties and high costs. Polymerization efficiency includes properties such as polymerization shrinkage and stresses, degree of conversion and polymerization depth. Tensilometer, tensometer, crack analysis, coordinate measuring machine, optical coherence tomography and digital image correlation are the methods used to examine polymerization shrinkage and stresses. Degree of conversion investigaiton consists mercury dilatometer, bonded disc, AcuVol and MARC (Managing Accurate Resin Curing) methods. high-performance liquid chromatomography and Fourier transform infrared spectroscopy are included as residuel monomer analysis techniques. Also scraping penetration methods are used in order to determine polymerization depth. In addition to these parameters pycnometer and thermal analyses are other mentioned topics. Consequently, it was attempted to present collective and comprehensive information about significant polymerization properties and analyzes.
Keywords: Polymerization; composite resin; analysis methods
- Sakaguchi RL, Powers JM. Restorative materials-composites and polymers. Craig?s Restorative Dental Materials. 13 th ed. Philadelphia: Mosby; 2012. p.161-98. [Crossref]
- Dayangaç B. [Composite resins]. Kompozit Restorasyonlar. 1. Baskı. İstanbul: Quintessence Yayıncılık; 2011. p.2-25.
- Ilie N, Keßler A, Durner J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J Dent. 2013;41(8):695-702. [Crossref] [PubMed]
- Ilie N, Durner J. Polymerization kinetic calculations in dental composites: a method comparison analysis. Clin Oral Investig. 2014;18(6):1587-96. [Crossref] [PubMed]
- Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2012;29(2):139-56.[Crossref] [PubMed]
- Price RB, Labrie D, Rueggeberg FA, Felix CM. Irradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing units. J Esthet Restor Dent. 2010;22(6):363-77. [Crossref] [PubMed]
- Soares CJ, Rodrigues MP, Oliveira LRS, Braga SSL, Barcelos LM, Silva GRD, et al. An evaluation of the light output from 22 contemporary light curing units. Braz Dent J. 2017;28(3):362-71. [Crossref] [PubMed]
- Ferracane JL. Resin composite--state of the art. Dent Mater. 2011;27(1):29-38. [Crossref] [PubMed]
- Anusavice K, Shen CRH. Restorative resins and cements. Phillips? Science of Dental Materials. 12 th ed. Missouri: Saunders; 2013. p.275-306.
- Ishikiriama SK, Valeretto TM, Franco EB, Mondelli RF. The influence of ?C-factor? and light activation technique on polymerization contraction forces of resin composite. J Appl Oral Sci. 2012;20(6):603-6. [Crossref] [PubMed] [PMC]
- Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962-70. [Crossref] [PubMed]
- Mantri SP, Mantri SS. Management of shrinkage stresses in direct restorative light-cured composites: a review. J Esthet Restor Dent. 2013;25(5):305-13. [Crossref] [PubMed]
- Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil. 2005;32(4):304-14. [Crossref] [PubMed]
- Amore R, Pagani C, Youssef MN, Anauate Netto C, Lewgoy HR. Polymerization shrinkage evaluation of three packable composite resins using a gas pycnometer. Pesqui Odontol Bras. 2003;17(3):273-7. [Crossref] [PubMed]
- Weig KM, Magalhães Filho TR, Costa Neto CA, Costa MF. Evaluation of polymerization shrinkage of dental composites by an optical method. Mater Sci Eng C Mater Biol Appl. 2015;47:70-6. [Crossref] [PubMed]
- Anusavice KJ, Shen C, Rawls RH. Mechanical properties of dental materials. Phillips? Science of Dental Materials. 12th ed. Missouri: Saunders; 2013. p.48-68.
- Sakaguchi R. Fundamentals of materials science. In: Sakaguchi RL, Powers JM, eds. Craigs?s Restorative Dental Materials. 13th ed. Philadelphia: Mosby; 2012. p.33-81.
- Ölmez A, Tuna D. [The factors affecting polymerisation shrinkage]. Cumhur Dent J. 2002;5(1):52-7.
- Gonçalves F, Azevedo CL, Ferracane JL, Braga RR. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011;27(6):520-6. [Crossref] [PubMed]
- Kwon Y, Ferracane J, Lee IB. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent Mater. 2012;28(7):801-9. [Crossref] [PubMed]
- Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkagestress in dental resin-composites. Dent Mater. 2016;32(8):998-1006. [Crossref] [PubMed]
- Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402-16. [Crossref] [PubMed][PMC]
- Kusgoz A, Ülker M, Yesilyurt C, Yoldas OH, Ozil M, Tanriver M. Silorane-based composite: depth of cure, surface hardness, degree of conversion, and cervical microleakage in Class II cavities. J Esthet Restor Dent. 2011;23(5):324-35. [Crossref] [PubMed]
- Cramer NB, Couch CL, Schreck KM, Boulden JE, Wydra R, Stansbury JW, et al. Properties of methacrylate-thiol-ene formulations as dental restorative materials. Dent Mater. 2011;26 (8):799-806. [Crossref] [PubMed] [PMC]
- de Melo Monteiro GQ, Montes MA, Rolim TV, de Oliveira Mota CC, de Barros Correia Kyotoku B, Gomes AS, et al. Alternative methods for determining shrinkage in restorative resin composites. Dent Mater. 2011;27(8): e176-85. [Crossref] [PubMed]
- Van Ende A, Van de Casteele E, Depypere M, De Munck J, Li X, Maes F, et al. 3D volumetric displacement and strain analysis of composite polymerization. Dent Mater. 2015;31(4): 453-61. [Crossref] [PubMed]
- Jongsma LA, Kleverlaan CJ. Influence of temperature on volumetric shrinkage and contraction stress of dental composites. Dent Mater. 2015;31(6):721-5. [Crossref] [PubMed]
- Wang Z, Landis FA, Giuseppetti AA, Lin-Gibson S, Chiang MY. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents. Dent Mater. 2014;30(12):1316-24. [Crossref] [PubMed] [PMC]
- Chiang MY, Giuseppetti AA, Qian J, Dunkers JP, Antonucci JM, Schumacher GE, et al. Analyses of a cantilever-beam based instrument for evaluating the development of polymerization stresses. Dent Mater. 2012;27(9): 899-905. [Crossref] [PubMed] [PMC]
- Yamamoto T, Nakamura Y, Nishide A, Kubota Y, Momoi Y. Contraction stresses in direct and indirect composite restorations compared by crack analysis. J Adhes Dent. 2013;15(1):4754.
- Braga RR, Yamamoto T, Tyler K, Boaro LC, Ferracane JL, Swain MV. A comparative study between crack analysis and a mechanical test for assessing the polymerization stress of restorative composites. Dent Mater. 2012;28(6):632-41. [Crossref] [PubMed]
- Yamamoto T, Kubota Y, Momoi Y, Ferracane JL. Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis. Dent Mater. 2012;28(9):e143-9.[Crossref] [PubMed]
- Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop. 2009;135(2): 252-9. [Crossref] [PubMed]
- Lau A, Li J, Heo YC, Fok A. A study of polymerization shrinkage kinetics using digital image correlation. Dent Mater. 2015;31(4): 391-8. [Crossref] [PubMed]
- Li J, Fok AS, Satterthwaite J, Watts DC. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dent Mater. 2009;25(5):582-8. [Crossref] [PubMed]
- Al-Ahdal K, Ilie N, Silikas N, Watts DC. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk-fill resin-composite at clinically relevant depth. Dent Mater. 2015;31(10): 1207-13. [Crossref] [PubMed]
- Erdemir U, Sancaklı HS, Yıldız E, Özel S. [Effects of different light curing units on surface hardness of nanocomposites]. On Dokuz Mayıs Uni Dis Hek Fak Derg. 2011;12(1):17.
- Barutcigil Ç, Ahmetoğlu F, Turgut H, Dayı B, Yalçın M. [Degree of conversion of novel lowshrinkage composites and methacrylatebased resin composite]. J Dent Fac Ataturk Uni. 2014;24(1):39-43.
- Jongsma LA, de Jager N, Kleverlaan CJ, Pallav P, Feilzer AJ. Shear bond strength of three dual-cured resin cements to dentin analyzed by finite element analysis. Dent Mater. 2012;28(10):1080-8. [Crossref] [PubMed]
- Chen Q, Zhao Y, Wu W, Xu T, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dent Mater. 2012;28(10):1071-9.[Crossref] [PubMed] [PMC]
- Yücel T, Benderli Y. [A study about polymerisation shrinkage of composite resins by using dilatometric tecnique]. IU Dis Hek Fak Derg. 1991;25(1):21-4.
- Alnazzawi A, Watts DC. Simultaneous determination of polymerization shrinkage, exotherm and thermal expansion coefficient for dental resin-composites. Dent Mater. 2012;28(12):1240-9. [Crossref] [PubMed]
- Tiba A, Charlton DG, Vandewalle KS, Ragain JC Jr. Comparison of two video-imaging instruments for measuring volumetric shrinkage of dental resin composites. J Dent. 2005;33(9):757-63. [Crossref] [PubMed]
- Seth S, Lee CJ, Ayer CD. Effect of instruction on dental students’ ability to light-cure a simulated restoration. J Can Dent Assoc. 2012;78:c123.
- Anusavice KJ, Shen C, Rawls HR. Bonding and bonding agents. Phillips? Science of Dental Materials. 12 th ed. Missouri: Saunders; 2013. p.257-74.
- Bayne SC. Correlation of clinical performance with ?in vitro tests? of restorative dental materials that use polymer-based matrices. Dent Mater. 2012;28(1):52-71. [Crossref] [PubMed]
- Małkiewicz K, Owoc A, Kluska M, Grzech-Leśniak K, Turło J. HPLC analysis of potentially harmful substances released from dental filing materials available on the EU market. Ann Agric Environ Med. 2014;21(1):86-90.
- Łagocka R, Jakubowska K, Chlubek D, Buczkowska-Radlińska J. Elution study of unreacted TEGDMA from bulk-fill composite (SDRTM Dentsply) using HPLC. Adv Med Sci. 2015;60(2):191-8. [Crossref] [PubMed]
- Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater. 2011;27(8):723-47. [Crossref] [PubMed]
- Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater. 2015;31(7):e141-9. [Crossref] [PubMed]
- Tabatabaee MH, Arami S, Ghavam M, Rezaii A. Monomer release from nanofilled and microhybrid dental composites after bleaching. J Dent (Tehran). 2014;11(1):56-66.
- Mc Nally L, O?Sullivan DJ, Jagger DC. An in vitro investigation of the effect of the addition of untreated and surface treated silica on the transverse and impact strength of poly(methyl methacrylate) acrylic resin. Biomed Mater Eng. 2006;16(2):93-100.
- Alshali RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N. Qualitative and quantitative characterization of monomers of uncured bulkfill and conventional resin-composites using liquid chromatography/mass spectrometry. Dent Mater. 2015;31(6):711-20. [Crossref] [PubMed]
- Tonetto MR, Pinto SC, Rastelli Ade N, Borges AH, Saad JR, Pedro FL, et al. Degree of conversion of polymer-matrix composite assessed by FTIR analysis. J Contemp Dent Pract. 2013;14(1):76-9. [Crossref] [PubMed]
- Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig. 2013;17(1):227-35. [Crossref] [PubMed]
- Oei JD, Mishriky M, Barghi N, Rawls HR, Cardenas HL, Aguirre R, et al. Development of a low-color, color stable, dual cure dental resin. Dent Mater. 2013;29(4):405-12. [Crossref] [PubMed]
- Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater. 2012;28(5):521-8. [Crossref] [PubMed]
- Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G. New insight into the ?depth of cure? of dimethacrylate-based dental composites. Dent Mater. 2012;28(5): 512-20. [Crossref] [PubMed]
- Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulkfill composites. J Dent. 2014;42(8):9931000. [Crossref] [PubMed]
- Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater. 2014;30(2):149-54. [Crossref] [PubMed]
- Erickson RL, Barkmeier WW. Curing characteristics of a composite. Part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater. 2014;30(6):e134-45.[Crossref] [PubMed]
- Aljabo A, Xia W, Liaqat S, Khan MA, Knowles JC, Ashley P, et al. Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dent Mater. 2015;31(11):1279-89. [Crossref] [PubMed]
- Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, et al. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011;27(2):157-64. [Crossref] [PubMed]
- Bennett AW, Watts DC. Performance of two blue light-emitting-diode dental light curing units with distance and irradiation-time. Dent Mater. 2004;20(1):72-9. [Crossref]
- Garcia D, Yaman P, Dennison J, Neiva G. Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper Dent. 2014;39(4):441-8. [Crossref] [PubMed]
- Agrawal A, Manwar NU, Hegde SG, Chandak M, Ikhar A, Patel A. Comparative evaluation of surface hardness and depth of cure of silorane and methacrylate-based posterior composite resins: an in vitro study. J Conserv Dent. 2015;18(2):136-9. [Crossref] [PubMed][PMC]
- Bouschlicher MR, Rueggeberg FA, Wilson BM. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004;29(6):698-704.
- Maia RR, Reis RS, Moro AF, Perez CR, Pessôa BM, Dias KR. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry. Peer J. 2015;3:e864. [Crossref] [PubMed] [PMC]
- Ramalho A, Braga de Carvalho, Antunes PV. Effects of temperature on mechanical and tribological properties of dental restorative composite materials. Tribol Int. 2013;63:186-95.[Crossref]
- Miyazaki CL, Medeiros IS, Matos JDR, Rodrigues Filho LE. Thermal characterization of dental composites by TG/DTG and DSC. J Therm Anal Calorim. 2010;102(1):361-7. [Crossref]
- Kantürk Figen A, Yilmaz Atali P, Pişkin MB. Thermal properties and kinetics of new-generation posterior bulk fill composite cured lightemitting diodes: TG, DSC, DMA. J Therm Anal Calorim. 2014;118(1):31-42. [Crossref]
- Qidwai M, Sheraz MA, Ahmed S, Alkhuraif AA, ur Rehman I. Preparation and characterization of bioactive composites and fibers for dental applications. Dent Mater. 2014;30(10): e253-63. [Crossref] [PubMed]
- Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J Dent. 2014;43(2):209-18. [Crossref] [PubMed]
- Rastelli AN, Jacomassi DP, Faloni AP, Queiroz TP, Rojas SS, Bernardi MI, et al. The filler content of the dental composite resins and their influence on different properties. Microsc Res Tech. 2012;75(6):758-65. [Crossref] [PubMed]
- Beun S, Bailly C, Devaux J, Leloup G. Physical, mechanical and rheological characterization of resin-based pit and fissure sealants compared to flowable resin composites. Dent Mater. 2012;28(4):349-59. [Crossref] [PubMed]
- Sampath S, Girish SR. Thermal studies on different classes of clinical dental composites. J Therm Anal Calorim. 2013;(111):219-25.[Crossref]
- Sideridou ID, Karabela MM, Spyroudi CS. Dynamic mechanical analysis of a hybrid and a nanohybrid light-cured dental resin composite. J Biomater Sci Polym Ed. 2009;20(12): 1797-808. [Crossref][PubMed]
- Sideridou ID, Vouvoudi EC, Adamidou EA. Dynamic mechanical thermal properties of the dental light-cured nanohybrid composite Kalore, GC: effect of various food/oral simulating liquids. Dent Mater. 2015;31(2):154-61.[Crossref] [PubMed]
.: Process List