Literatürde biyolojik sistemlerde yer alan objelerin ayna görüntüleriyle örtüşmeme durumları üzerinden ifade edilen kiralite, ilaçların vücutta ortaya çıkardığı etkiler bakımından önemli bir rol oynamaktadır. 1950?li yıllarda sentetik ilaç üretiminde görülen artışla birlikte izomer karışımı formundaki ilaçların piyasada yaygınlaştığı görülmektedir. İlacın yapısında bulunan her bir izomerin, farmakolojik olarak birbirinden farklı etki ve advers ilaç reaksiyonlarına yol açabildiği bilinmektedir. Bu durum, klinikte ilaç etkililiğini olumsuz yönde değişebilmesi riskinin yanı sıra potansiyel güvenlilik sorunlarına da zemin hazırlayabilir. Örneğin farmakovijilans tarihçesinde önemli bir kilometre taşı olan talidomid trajedisinde de farklı klinik sonuçlar alınmasında molekülün farklı izomerlerinin rol oynadığı literatürde gösterilmiştir. Kiralite kavramı ile ilgili söz konusu gelişmeler ışığında uluslararası sağlık otoriteleri, yeni üretilen ilaçların mümkün olduğunca saf enantiyomer olarak üretilmesi yönünde pek çok tavsiyede bulunmuştur. Farmasötik teknoloji alanında kaydedilen ilerlemelerin de katkısıyla piyasaya giren yeni ilaçlarda saf izomerlerin payı eskiye kıyasla giderek artmıştır. Ayrıca mevcut olan izomer karışımı formundaki ilaçların saflaştırılarak piyasaya sürülmesi prensibine dayanan ?kiral dönüşüm? örnekleri de ilaç pazarında görülmeye başlanmıştır. Hâlihazırda ilaçların saf izomer olarak geliştirilmesi gibi bir zorunluluk bulunmamakla birlikte, izomer karışımlar ile ilgili güvenlilik endişelerinin gelecekte yeni yaklaşımlara kapı aralamasının mümkün olabileceği düşünülmektedir. Bu derlemede; kiralite kavramı ve söz konusu kavramın ilaçlardaki güvenlilik sorunları ile olası ilişkisi ele alınmıştır.
Anahtar Kelimeler: Kiralite; ilaç güvenliliği; farmakovijilans; stereokimya; enantiyomer
Chirality, which is expressed in terms of non-overlapping of mirror images of objects in biological systems, plays an important role for drugs to exert their effects on the body. With the increase in the manufacture of synthetic drugs in the 1950s, drugs in the form of isomeric mixtures became widespread in the market. Each isomer in the structure of the drug can cause pharmacologically different effects and adverse drug reactions. This situation may adversely affect the clinical efficacy of the drug, as well as lay the groundwork for safety problems. For example, in the thalidomide tragedy, which is an important milestone in the history of pharmacovigilance, different isomers of the molecule have been shown to play a role in obtaining different clinical outcomes. In the light of these developments in chirality concept, health authorities have recommended that new drugs be produced as pure enantiomers as much as possible. With the contribution of the advances in pharmaceutical technology, the share of pure isomers in new drugs entering the market has gradually increased. In addition, examples of 'chiral switch' based on the purification of existing isomeric mixture drugs have begun to be introduced. Although there is currently no obligation to develop drugs as pure isomers, it is possible that safety concerns regarding isomeric mixtures will leads to new approaches in the future. In this review, the concept of chirality is discussed from the perspective of its possible relationship with the safety problems in drugs.
Keywords: Chirality; drug safety; pharmacovigilance; stereochemistry; enantiomer
- McConathy J, Owens MJ. Stereochemistry in drug action. Prim Care Companion J Clin Psychiatry. 2003;5(2):70-3. [Crossref] [PubMed] [PMC]
- Blaser HU. Chirality and its implications for the pharmaceutical industry. Rend Fis Acc Lincei. 2013;24(3):213-6. [Crossref]
- Caner H, Groner E, Levy L, Agranat I. Trends in the development of chiral drugs. Drug Discov Today. 2004;9(3):105-10. [Crossref] [PubMed]
- Ariëns EJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol. 1984;26(6):663-8. [Crossref] [PubMed]
- Smith SW. Chiral toxicology: it's the same thing...only different. Toxicol Sci. 2009;110(1):4-30. [Crossref] [PubMed]
- Gal J. Single-isomer science: the phenomenon and its terminology. CNS Spectr. 2002;7(4 Suppl 1):8-13. [Crossref] [PubMed]
- Lin GQ, Zhang JG, Cheng JF. Overview of chirality and chiral drugs. In: Lin GQ, You QD, Cheng JF, eds. Chiral Drugs: Chemistry and Biological Action. 1st ed. Hoboken, N.J: John Wiley & Sons. 2011. p.3-28. [Crossref] [PMC]
- Tucker GT. Chiral switches. Lancet. 2000;355(9209):1085-7. [Crossref] [PubMed]
- Singh K, Shakya P, Kumar A, Alok S, Kamal M, Singh SP. Stereochemistry and its role in drug design. IJPSR. 2014;5(11):4644-59. [Link]
- Yang G, Bu HZ. Toxicology of chiral drugs. In: Lin GQ, You QD, Cheng JF, eds. Chiral Drugs: Chemistry and Biological Action. 1st ed. Hoboken, N.J: John Wiley & Sons. 2011. p.381-99. [Crossref]
- Solomons TWG, Fryhle CB, Snyder SA. Stereochemistry: chiral molecules. Organic Chemistry. 12th ed. USA: Wiley; 2016. p.193-239.
- Pidcock E. Achiral molecules in non-centrosymmetric space groups. Chem Commun (Camb). 2005;(27):3457-9. [Crossref] [PubMed]
- Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res. 2017;124:527-42. [Crossref] [PubMed]
- Roos G, Roos C. Isomers and stereochemistry. Organic Chemistry Concepts. 1st ed. Academic Press; 2015. p.43-54. [Crossref] [PubMed]
- Caldwell J, Wainer IW. Stereochemistry: definitions and a note on nomenclature. Hum Psychopharmacol. 2001;16(S2):S105-S107. [Crossref] [PubMed]
- Rehan HS, Chopra D, Kakkar AK. Physician's guide to pharmacovigilance: terminology and causality assessment. Eur J Intern Med. 2009;20(1):3-8. [Crossref] [PubMed]
- Akici A, Oktay S. Rational pharmacotherapy and pharmacovigilance. Curr Drug Saf. 2007;2(1):65-9. [Crossref] [PubMed]
- Mozga T, Prokop Z, Chaloupková R, Damborský J. Chiral aliphatic hydroxy compounds in nature: a review of biological functions and practical applications. Collect Czechoslov Chem Commun. 2009;74(7):1195-278. [Crossref]
- Agranat I, Wainschtein SR, Zusman EZ. The predicated demise of racemic new molecular entities is an exaggeration. Nat Rev Drug Discov. 2012;11(12):972-3. [Crossref] [PubMed]
- FDA's policy statement for the development of new stereoisomeric drugs. Chirality. 1992;4(5):338-40. [Crossref] [PubMed]
- Calcaterra A, D'Acquarica I. The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal. 2018;147:323-40. [Crossref] [PubMed]
- Nguyen LA, He H, Pham-Huy C. Chiral drugs: an overview. Int J Biomed Sci. 2006;2(2):85-100. [PubMed] [PMC]
- Dong H, Guo X, Li Z. Pharmacokinetics of chiral drugs. In: Lin GQ, You QD, Cheng JF, eds. Chiral Drugs: Chemistry and Biological Action. 1st ed. Hoboken, N.J: John Wiley & Sons; 2011. p.347-79. [Crossref]
- Nerurkar SG, Dighe SV, Williams RL. Bioequivalence of racemic drugs. J Clin Pharmacol. 1992;32(10):935-43. [Crossref] [PubMed]
- Tillement JP, Testa B, Brée F. Compared pharmacological characteristics in humans of racemic cetirizine and levocetirizine, two histamine H1-receptor antagonists. Biochem Pharmacol. 2003;66(7):1123-6. [Crossref] [PubMed]
- Hanke N, Türk D, Selzer D, Wiebe S, Fernandez É, Stopfer P, et al. A Mechanistic, enantioselective, physiologically based pharmacokinetic model of verapamil and norverapamil, built and evaluated for drug-drug interaction studies. Pharmaceutics. 2020;12(6):556. [Crossref] [PubMed] [PMC]
- Somogyi A, Bochner F, Foster D. Inside the isomers: the tale of chiral switches. Aust Prescr. 2004;27(2):47-9. [Crossref]
- Yacobi A, Levy G. Protein binding of warfarin enantiomers in serum of humans and rats. J Pharmacokinet Biopharm. 1977;5(2):123-31. [Crossref] [PubMed]
- Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40(8):587-603. [Crossref] [PubMed]
- Brunton LB, Lazo JS, Parker KL. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw-Hill; 2005. [Link]
- Chhabra N, Aseri ML, Padmanabhan D. A review of drug isomerism and its significance. Int J Appl Basic Med Res. 2013;3(1):16-8. [Crossref] [PubMed] [PMC]
- Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001;52(4):349-55. [Crossref] [PubMed] [PMC]
- Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J Pharm Pharm Sci. 2001;4(2):185-200. [PubMed]
- Chirumamilla RR, Marchant R, Nigam P. Captopril and its synthesis from chiral intermediates. J Chem Technol Biotechnol. 2001;76(2):123-7. [Crossref]
- Liu Y, Gu XH. Pharmacology of chiral drugs. In: Lin GQ, You QD, Cheng JF, eds. Chiral Drugs: Chemistry and Biological Action. 1st ed. Hoboken, N.J: John Wiley & Sons; 2011. p.323-45. [Crossref]
- Agranat I I, Caner H. Intellectual property and chirality of drugs. Drug Discov Today. 1999;4(7):313-21. [Crossref] [PubMed]
- Chmielewska A, Konieczna L, Bączek T. A novel two-step liquid-liquid extraction procedure combined with stationary phase immobilized human serum albumin for the chiral separation of cetirizine enantiomers along with M and P parabens. Molecules. 2016;21(12):1654. [Crossref] [PubMed] [PMC]
- Sánchez C, Bøgesø KP, Ebert B, Reines EH, Braestrup C. Escitalopram versus citalopram: the surprising role of the R-enantiomer. Psychopharmacology (Berl). 2004;174(2):163-76. [Crossref] [PubMed]
- Nerkar AG, Lade KS, Gadhave NA, Sawant SD. Chiral switches: a review. J Pharm Res. 2011;4(4):1300-3. [Link]
- Murakami H. From racemates to single enantiomers-chiral synthetic drugs over the last 20 years. Top Curr Chem. 2007;269:273-99. [Crossref] [PubMed]
- Abram M, Jakubiec M, Kamiński K. Chirality as an important factor for the development of new antiepileptic drugs. ChemMedChem. 2019;14(20):1744-61. [Crossref] [PubMed]
- Eidelman C, Lowry JA. D-Penicillamine. In: Brent J, Burkhart K, Dargan P, Hatten B, Megarbane B, Palmer R, eds. Critical Care Toxicology. 2nd ed. Cham: Springer International Publishing; 2016. p.1-7. [Link]
- Kean WF, Lock CJ, Howard-Lock HE. Chirality in antirheumatic drugs. Lancet. 1991;338(8782-8783):1565-8. [Crossref] [PubMed]
- Lim SA. Ethambutol-associated optic neuropathy. Ann Acad Med Singap. 2006;35(4):274-8. [PubMed]
- Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today. 2015;105(2):140-56. [Crossref] [PubMed] [PMC]
- Tokunaga E, Yamamoto T, Ito E, Shibata N. Understanding the thalidomide chirality in biological processes by the self-disproportionation of enantiomers. Sci Rep. 2018;8:17131. [Crossref] [PubMed] [PMC]
.: Process List