Objective: Oxidized low-density lipoprotein (ox-LDL) damages endothelial cells (ECs) and induces pathogenic processes related to atherosclerosis (AS). Long non-coding RNAs (lncRNAs) have been accepted to be transcripts code no proteins and have important roles in gene expression regulation. LncRNAs have been thought important targets in the fight against cardiovascular diseases (CVDs). RNA component of signal recognition particle (SRP) 7SL1 (RN7SL1) is a lncRNA. RN7SL1 was associated with inhibition of cell cycle arrest. Since RN7SL1 is associated with cell cycle arrest and ox-LDL affects EC cell apoptosis, hypothesis of our study is that ox-LDL may alter the expression of this lncRNA in ECs. There was no study yet on RN7SL1 and CVDs including AS. We aimed to compare RN7SL1 gene expression between ECs treated with ox-LDL and normal ECs. Material and Methods: We investigated expression level of lncRNA RN7SL1 in human umbilical vein endothelial cells (HUVECs) induced with ox-LDL in this study. We performed measurement with SYBR green dye using quantitative PCR (real-time PCR, qPCR) method. Results: We found that expression of RN7SL1 was up-regulated 6.06 fold statistic significantly in HUVECs after ox-LDL treatment (P<0.001**). RN7SL1 upregulation may modulate EC cycle and apoptosis in AS, since ox-LDL stimulation increased expression of RN7SL1 gene in HUVECs. Conclusion: According to findings of the current study, our interest focused on that RN7SL1 may associated with vascular damage of the ECs at initation of the AS. Our results further will guide future studies related to the RN7SL1 and CVDs including AS.
Keywords: Gene expression; human umbilical vein endothelial cell; oxidized low-density lipoprotein; RN7SL1
Amaç: Oksitlenmiş düşük-yoğunluklu lipoprotein [oxidized lowdensity lipoprotein (ox-LDL)] endotel hücrelerine [endothelial cells (ECs)] zarar verir ve ateroskleroz (AS) ile ilişkili patojenik süreçleri başlatır. Uzun kodlama yapmayan ribonükleik asitler (lncRNA'lar) protein kodlamayan transkriptler olarak kabul edilir ve gen ifadesinin düzenlenmesinde önemli rolleri vardır. LncRNA'ların kardiyovasküler hastalıklarla [cardiovascular diseases (CVD)] mücadelede önemli hedefler olduğu düşünülmektedir. Sinyal tanıma partikülünün [signal recognition particle (SRP)] RNA bileşeni 7SL1 (RN7SL1) bir lncRNA'dır. RN7SL1, hücre döngüsü durmasının inhibisyonu ile ilişkilendirilmiştir. RN7SL1; hücre döngüsünün durdurulması ile ilişkili olduğundan ve ox-LDL; EC hücresi apoptozunu etkilediğinden, çalışmamızın hipotezi, ox-LDL'nin, bu lncRNA'nın EC'lerdeki ekspresyonunu değiştirebileceği yönündedir. RN7SL1 ve CVD'ler kapsamındaki AS ile ilişkili henüz bir çalışma yapılmamıştır. Çalışmamızda ox-LDL ile muamele edilen ve normal EC'ler arasında RN7SL1 gen ekspresyonunu karşılaştırmayı amaçladık. Gereç ve Yöntemler: Bu çalışmada ox-LDL ile indüklenen insan göbek kordonu damar endotel hücrelerinde [human umbilical vein endothelial cells (HUVEC'ler)] lncRNA RN7SL1 ekspresyon düzeyini araştırdık. Kantitatif polimeraz zincir reaksiyonu [polymerase chain reaction (PCR)] (gerçek zamanlı PCR, qPCR) yöntemini kullanarak SYBR green boyası ile ölçüm yaptık. Bulgular: Ox-LDL uyarımından sonra HUVEC'lerde RN7SL1 ekspresyonunun istatistiksel olarak anlamlı şekilde 6,06 kat arttığını bulduk (p<0,001**). Ox-LDL uyarımı HUVEC'lerde RN7SL1 geninin ekspresyonunu artırdığından, RN7SL1'in yukarı regülasyonu AS'de EC döngüsünü ve apoptozu düzenleyebilir. Sonuç: Mevcut çalışmanın bulgularına göre, RN7SL1'in AS başlangıcında EC'lerin vasküler hasarı ile ilişkili olabileceği düşünülmektedir. Sonuçlarımız ayrıca RN7SL1 ve AS dâhil CVD'lerle ilgili gelecekteki çalışmalara rehberlik edecektir.
Anahtar Kelimeler: Gen ekspresyonu; insan göbek kordonu damar endotel hücre; oksitlenmiş düşük-yoğunluklu lipoprotein; RN7SL1
- Packard C, Chapman MJ, Sibartie M, Laufs U, Masana L. Intensive low-density lipoprotein cholesterol lowering in cardiovascular disease prevention: opportunities and challenges. Heart. 2021;107(17):1369-75. [Crossref] [PubMed] [PMC]
- Barreto J, Karathanasis SK, Remaley A, Sposito AC. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a cardiovascular risk predictor: mechanistic insight and potential clinical use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. [Crossref] [PubMed] [PMC]
- Lin Y, Xie Y, Hao Z, Bi H, Liu Y, Yang X, et al. Protective effect of uric acid on ox-LDL-induced HUVECs injury via Keap1-Nrf2-ARE pathway. J Immunol Res. 2021;2021:5151168. [Crossref] [PubMed] [PMC]
- Cao L, Zhang Z, Li Y, Zhao P, Chen Y. LncRNA H19/miR-let-7 axis participates in the regulation of ox-LDL-induced endothelial cell injury via targeting periostin. Int Immunopharmacol. 2019;72:496-503. [Crossref] [PubMed]
- Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D, et al. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci. 2015;52(2):70-85. [Crossref] [PubMed]
- Sorokin AV, Kotani K, Elnabawi YA, Dey AK, Sajja AP, Yamada S, et al. Association between oxidation-modified lipoproteins and coronary plaque in psoriasis. Circ Res. 2018;123(11):1244-54. [Crossref] [PubMed] [PMC]
- Delihas N. Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: a historical perspective. World J Biol Chem. 2015;6(4):272-80. [Crossref] [PubMed] [PMC]
- Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37(1):3-9. [Crossref] [PubMed]
- Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96-118. Erratum in: Nat Rev Mol Cell Biol. 2021;22(2):159. [Crossref] [PubMed] [PMC]
- Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol. 2018;60:25. [Crossref] [PubMed] [PMC]
- Gussakovsky D, McKenna SA. Alu RNA and their roles in human disease states. RNA Biol. 2021;18(sup2):574-85. [Crossref] [PubMed] [PMC]
- Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430-47. [Crossref] [PubMed] [PMC]
- Liu Q, Liu Z, Zhou LJ, Cui YL, Xu JM. The long noncoding RNA NKILA protects against myocardial ischaemic injury by enhancing myocardin expression via suppressing the NF-κB signalling pathway. Exp Cell Res. 2020;387(2):111774. [Crossref] [PubMed]
- Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J, et al. Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. Drug Des Devel Ther. 2019;13:2619-32. [Crossref] [PubMed] [PMC]
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. [Crossref] [PubMed]
- Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165-97. [Crossref] [PubMed] [PMC]
- Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, et al. Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther. 2014;144(3):253-67. [Crossref] [PubMed]
- Rey F, Esposito L, Maghraby E, Mauri A, Berardo C, Bonaventura E, et al. Role of epigenetics and alterations in RNA metabolism in leukodystrophies. Wiley Interdiscip Rev RNA. 2024;15(3):e1854. [Crossref] [PubMed]
- Xiong Y, Alnoud MAH, Ali H, Ali I, Ahmad S, Khan MU, et al. Beyond the silence: a comprehensive exploration of long non-coding RNAs as genetic whispers and their essential regulatory functions in cardiovascular disorders. Curr Probl Cardiol. 2024;49(3):102390. [Crossref] [PubMed]
- Correia CCM, Rodrigues LF, de Avila Pelozin BR, Oliveira EM, Fernandes T. Long non-coding RNAs in cardiovascular diseases: potential function as biomarkers and therapeutic targets of exercise training. Noncoding RNA. 2021;7(4):65. [Crossref] [PubMed] [PMC]
- Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2006;2(2):93-102. [Crossref] [PubMed]
- Wang X, Teng X, Luo C, Kong L. Mechanisms and advances of epigenetic regulation in cardiovascular disease. Front Biosci (Landmark Ed). 2024;29(6):205. [Crossref] [PubMed]
- Abdelmohsen K, Panda AC, Kang MJ, Guo R, Kim J, Grammatikakis I, et al. 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res. 2014;42(15):10099-111. [Crossref] [PubMed] [PMC]
- Schwartz AM, Tatosyan KA, Stasenko DV, Kramerov DA. Regulation of Transcription by RNA Polymerase III Promotors in the Norm and Pathology. Mol Biol (Mosk). 2024;58(2):220-33. Russian. [Crossref] [PubMed]
- Walter P, Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 1982;299(5885):691-8. [Crossref] [PubMed]
- White RJ. RNA polymerase III transcription and cancer. Oncogene. 2004;23(18):3208-16. [Crossref] [PubMed]
- Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA. 2018;9(3):e1471. [Crossref] [PubMed] [PMC]
- Chan GH, Chan E, Kwok CT, Leung GP, Lee SM, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol. 2022;13:981152. [Crossref] [PubMed] [PMC]
- Zhang Q, Jeang KT. Long non-coding RNAs (lncRNAs) and viral infections. Biomed Pharmacother. 2013;3(1):34-42. [Crossref] [PubMed] [PMC]
- Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, et al. 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol. 2007;81(23):13112-24. [Crossref] [PubMed] [PMC]
- Yazıcı S, Guner RY, Akyol M, Tuzemen Bayyurt EB, Arslan S. Research on hotair and 7SL-RNA gene expression levels in psoriasis vulgaris. Indian J Dermatol. 2021;66(6):704. [Crossref] [PubMed] [PMC]
- Azmanov DN, Siira SJ, Chamova T, Kaprelyan A, Guergueltcheva V, Shearwood AJ, et al. Transcriptome-wide effects of a POLR3A gene mutation in patients with an unusual phenotype of striatal involvement. Hum Mol Genet. 2016;25(19):4302-4314. [Crossref] [PubMed]
- Skreka K, Schafferer S, Nat IR, Zywicki M, Salti A, Apostolova G, et al. Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation. Nucleic Acids Res. 2012;40(13):6001-15. Erratum in: Nucleic Acids Res. 2012;40(19):9980. [Crossref] [PubMed] [PMC]
- Kim C, Kang D, Lee EK, Lee JS. Long noncoding RNAs and RNA-binding proteins in oxidative stress, cellular senescence, and age-related diseases. Oxid Med Cell Longev. 2017;2017:2062384. [Crossref] [PubMed] [PMC]
- Jiang H, Zhou Y, Nabavi SM, Sahebkar A, Little PJ, Xu S, et al. Mechanisms of oxidized LDL-mediated endothelial dysfunction and ıts consequences for the development of atherosclerosis. Front Cardiovasc Med. 2022;9:925923. [Crossref] [PubMed] [PMC]
.: Process List