Stroke is a major cause of disability worldwide. Upper extremity (UE) impairments such as abnormal muscle tone or abnormal recruitment are extensively seen following the incident. The changes in the muscle tone, strength and recruitment pattern may lead to altered biomechanical properties in the UE. Thus, the functions and kinematic features of UE movements may also change. As a result of these changes, abnormal motor performance of UE may be obversed in patients with stroke. Therefore, the knowledge about healthy and abnormal biomechanical properties in addition to the knowledge on differentiated kinematic characteristics after stroke are extremely important in clinical evaluation and decision-making. In this article, we reviewed the current evidences of literature about the changes in biomechanical, kinematic and functional properties in the UE and related assessment methods after stroke. It was our primary purpose to underline key points during clinical assessment to guide researchers and clinicians. In conclusion, it was seen that none of the outcome measures in the literature were able to assess the entire aspects of the impairment because of their variable focal points and qualitative or quantitative structure. Therefore, it is suggested by the authors to include more than one outcome measurement with various aspects in order to evaluate the every components of UE impairment. Through this way, more accurate planning for rehabilitation approaches may be achievable.
Keywords: Stroke; kinematics; upper extremity; assessment
İnme, dünya çapında önemli bir özürlülük nedenidir. İnmeyi takiben, anormal kas tonusu veya harekete katılım sırasında ortaya çıkan yetersizlikler gibi üst ekstremite (ÜE) etkilenimleri ile sıklıkla karşılaşılmaktadır. Kas tonusu, kas kuvveti ve harekete dahil olma paternlerindeki değişiklikler, ÜE'de biyomekanik değişikliklere yol açabilir. Bu duruma bağlı olarak, ÜE fonksiyonları ve hareketlerinin kinematik özellikleri de etkilenebilir. Bahsi geçen değişimlerin sonucunda, inmeli hastaların ÜE'lerinde anormal motor performans açığa çıkabilir. Bu nedenle, inme sonrası ortaya çıkan farklılaşmış kinematik özelliklere ek olarak sağlıklı ve anormal biyomekanik yapılar hakkında da bilgi sahibi olmak klinik değerlendirme ve klinik karar vermede oldukça önemlidir. Bu makalede, ÜE'nin biyomekanik, kinematik ve fonksiyonel özelliklerinin değişimi ve bu değişimlere ilişkin değerlendirme yöntemleri ile ilgili literatürde yer alan güncel bulguları derledik. Bu derleme ile birincil amacımız, inme sonrası klinik değerlendirmenin anahtar noktalarını belirleyerek araştırmacılara ve klinisyenlere yol göstermekti. Sonuç olarak, literatürdeki değerlendirme ölçeklerinin değişken odak noktalarına ve niteliksel ya da niceliksel yapılara sahip olduğu saptandı. Ölçeklerden hiçbirinin, bu yapıları nedeniyle, ÜE etkileniminin tüm yönlerini değerlendirmede yeterli olmadığı tespit edildi. Dolayısıyla, klinik muayenede ÜE etkileniminin tüm bileşenlerini değerlendirmek amacıyla, çok yönlü birden fazla ölçeğe yer verilmesi yazarlar tarafından önerilmektedir. Bu sayede, fizyoterapi ve rehabilitasyon yaklaşımları için daha doğru bir planlama yapılarak, etkili bir tedavi sunulabilir.
Anahtar Kelimeler: İnme; kinematik; üst ekstremite; değerlendirme
- Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75 (8):852-7. [Crossref]
- Parker VM, Wade DT, Langton Hewer R. Loss of arm function after stroke: measurement, frequency, and recovery. Int Rehabil Med. 1986;8(2):69-73. [Crossref] [PubMed]
- Wade DT. Measurement in neurological rehabilitation. Curr Opin Neurol Neurosurg. 1992;5(5): 682-6.
- Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. BMC Neurol. 2012;12:162. [Crossref] [PubMed] [PMC]
- Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32(6): 1279-84. [Crossref] [PubMed]
- Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518-27. [Crossref] [PubMed]
- Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26(2):104-14. [Crossref] [PubMed] [PMC]
- Aprile I, Rabuffetti M, Padua L, Di Sipio E, Simbolotti C, Ferrarin M. Kinematic analysis of the upper limb motor strategies in stroke patients as a tool towards advanced neurorehabilitation strategies: a preliminary study. Biomed Res Int. 2014;2014:636123. [Crossref] [PubMed] [PMC]
- van Dokkum L, Hauret I, Mottet D, Froger J, Metrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28(1):4-12. [Crossref] [PubMed]
- de los Reyes-Guzman A, Dimbwadyo-Terrer I, Trincado-Alonso F, Monasterio-Huelin F, Torricelli D, Gil-Agudo A. Quantitative assessment based on kinematic measures of functional impairments during upper extremity movements: a review. Clin Biomech (Bristol, Avon). 2014;29(7):719-27. [Crossref] [PubMed]
- Alt Murphy M, Willen C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. Neurorehabil Neural Repair. 2012;26(9):1106-15. [Crossref] [PubMed]
- Cacho EW, de Oliveira R, Ortolan RL, Varoto R, Cliquet A Jr. Upper limb assessment in tetraplegia: clinical, functional and kinematic correlations. Int J Rehabil Res. 2011;34(1):65-72. [Crossref] [PubMed]
- Johansson GM, Grip H, Levin MF, Hager CK. The added value of kinematic evaluation of the timed finger-to-nose test in persons post-stroke. J Neuroeng Rehabil. 2017;14(1):11. [Crossref] [PubMed] [PMC]
- Santisteban L, Teremetz M, Bleton JP, Baron JC, Maier MA, Lindberg PG. Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. PLoS One. 2016;11(5):e0154792. [Crossref] [PubMed] [PMC]
- See J, Dodakian L, Chou C, Chan V, McKenzie A, Reinkensmeer DJ, et al. A standardized approach to the Fugl-Meyer assessment and its implications for clinical trials. Neurorehabil Neural Repair. 2013;27(8):732-41. [Crossref] [PubMed]
- Woodbury ML, Velozo CA, Richards LG, Duncan PW, Studenski S, Lai SM. Dimensionality and construct validity of the Fugl-Meyer Assessment of the upper extremity. Arch Phys Med Rehabil. 2007;88(6):715-23. [Crossref] [PubMed]
- van der Lee JH, Beckerman H, Knol DL, de Vet HC, Bouter LM. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke. 2004;35(6):1410-4. [Crossref] [PubMed]
- Ersoz Huseyinsinoglu B, Razak Ozdincler A, Erkan Ogul O, Krespi Y. [Reliability and validity of Turkish version of motor activity log-28]. Turk J Neurol. 2011;17(2):83-9.
- Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-7. [Crossref] [PubMed]
- Sathian K, Buxbaum LJ, Cohen LG, Krakauer JW, Lang CE, Cobetta M, et al. Neurological principles and rehabilitation of action disorders: common clinical deficits. Neurorehabil Neural Repair. 2011;25(5 Suppl):21S-32S. [Crossref] [PubMed] [PMC]
- Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. [Crossref] [PubMed] [PMC]
- McMorland AJ, Runnalls KD, Byblow WD. A neuroanatomical framework for upper limb synergies after stroke. Front Hum Neurosci. 2015;9:82. [Crossref] [PubMed] [PMC]
- Brunnstrom S. Movement Therapy in Hemiplegia: A Neurophysiological Approach. 1st ed. New York: Harper & Row; 1970. p.192.
- Otman S. Hemipleji Rehabilitasyonunda Norofizyolojik Yakladimlar. 2. Baski. Ankara: HU FTR YO Yayinlari; 2001. p.17-20.
- Roh J, Rymer WZ, Beer RF. Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum Neurosci. 2015;9:6. [Crossref] [PubMed] [PMC]
- Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J Neurophysiol. 2013;109(3):768-81. [Crossref] [PubMed] [PMC]
- Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.
- Kopp B, Kunkel A, Flor H, Platz T, Rose U, Mauritz KH, et al. The Arm Motor Ability Test: reliability, , and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Arch Phys Med Rehabil. 1997;78(6):615-20. [Crossref]
- Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, et al. The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair. 2005;19(3):194-205. [Crossref] [PubMed]
- Malouin F, Pichard L, Bonneau C, Durand A, Corriveau D. Evaluating motor recovery early after stroke: comparison of the Fugl-Meyer assessment and the Motor Assessment Scale. Arch Phys Med Rehabil. 1994;75(11):1206-12. [Crossref]
- Carey LM. Somatosensory loss after stroke. Crit Rev Phys Rehabil Med. 1995;7(1):51-91. [Crossref]
- Kessner SS, Bingel U, Thomalla G. Somatosensory deficits after stroke: a scoping review. Top Stroke Rehabil. 2016;23(2):136-46. [Crossref] [PubMed]
- Tyson SF, Crow JL, Connell L, Winward C, Hillier S. Sensory Impairments of the lower limb after stroke: a pooled analysis of individual patient data. Top Stroke Rehabil. 2013;20(5):441-9. [Crossref] [PubMed]
- Patel AT, Duncan PW, Lai SM, Studenski S. The relation between impairments and functional outcomes poststroke. Arch Phys Med Rehabil. 2000;81(10):1357-63. [Crossref] [PubMed]
- Vidoni ED, Acerra NE, Dao E, Meehan SK, Boyd LA. Role of the primary somatosensory cortex in motor learning: an rTMS study. Neurobiol Learn Mem. 2010;93(4):532-9. [Crossref] [PubMed]
- Karthikbabu S, Chakrapani M, Ganeshan S, Rakshith KC, Nafeez S, Prem V. A review on assessment and treatment of the trunk in stroke:A need or luxury. Neural Regen Res. 2012;7(25):1974-7.
- Dickstein R, Shefi S, Marcovitz E, Villa Y. Electromyographic activity of voluntarily activated trunk flexor and extensor muscles in post-stroke hemiparetic subjects. Clin Neurophysiol. 2004;115(4): 790-6. [Crossref] [PubMed]
- Tanaka S, Hachisuka K, Ogata H. Trunk rotatory muscle performance in post-stroke hemiplegic patients. Am J Phys Med Rehabil. 1997;76(5):366-9. [Crossref] [PubMed]
- Tanaka S, Hachisuka K, Ogata H. Muscle strength of trunk flexion-extension in post-stroke hemiplegic patients. Am J Phys Med Rehabil. 1998;77(4):288-90. [Crossref] [PubMed]
- Quintino LF, Franco J, Gusmao AFM, Silva PFS, Faria CDCM. Trunk flexor and extensor muscle performance in chronic stroke patients: a case-control study. Braz J Phys Ther. 2018;22(3):231-7. [Crossref] [PubMed] [PMC]
- Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens PJ, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133-43. [Crossref] [PubMed]
- Aguiar LT, Camargo LBA, Estarlino LD, Teixeira-Salmela LF, Faria CDCM. Strength of the lower limb and trunk muscles is associated with gait speed in individuals with sub-acute stroke: a cross-sectional study. Braz J Phys Ther. 2018;22(6):459-66. [Crossref] [PubMed] [PMC]
- Collins KC, Kennedy NC, Clark A, Pomeroy VM. Kinematic components of the reach-to-target movement after stroke for focused rehabilitation interventions: systematic review and meta-analysis. Front Neurol. 2018;9:472. [Crossref] [PubMed] [PMC]
- Roby-Brami A, Feydy A, Combeaud M, Biryukova EV, Bussel B, Levin MF. Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand. 2003;107(5):369-81. [Crossref] [PubMed]
- De Baets L, Van Deun S, Monari D, Jaspers E. Three-dimensional kinematics of the scapula and trunk, and associated scapular muscle timing in individuals with stroke. Hum Mov Sci. 2016;48:82-90. [Crossref] [PubMed]
- Johansson GM, Grip H, Levin MF, Hager CK. The added value of kinematic evaluation of the timed finger-to-nose test in persons post-stroke. J Neuroeng Rehabil. 2017;14(1):11. [Crossref] [PubMed] [PMC]
- Sorrentino G, Sale P, Solaro C, Rabini A, Cerri CG, Ferriero G. Clinical measurement tools to assess trunk performance after stroke: a systematic review. Eur J Phys Rehabil Med. 2018;54(5):772-84. [Crossref] [PubMed]
- Fujiwara T, Liu M, Tsuji T, Sonoda S, Mizuno K, Akaboshi K, et al. Development of a new measure to assess trunk impairment after stroke (trunk impairment scale): its psychometric properties. Am J Phys Med Rehabil. 2004;83(9):681-8. [Crossref] [PubMed]
- Caillet R. The Shoulder in Hemiplegia. 3rd ed. Philadelphia (PA): FA Davis Co; 1980. p.130.
- Paci M, Nannetti L, Rinaldi LA. Glenohumeral subluxation in hemiplegia: an overview. J Rehabil Res Dev. 2005;42(4):557-68. [Crossref] [PubMed]
- Price CI, Rodgers H, Franklin P, Curless RH, Johnson GR. Glenohumeral subluxation, scapula resting position, and scapula rotation after stroke: a noninvasive evaluation. Arch Phys Med Rehabil. 2001;82(7):955-60. [Crossref] [PubMed]
- Karaahmet OZ, Eksioglu E, Gurcay E, Karsli PB, Tamkan U, Bal A, et al. Hemiplegic shoulder pain: associated factors and rehabilitation outcomes of hemiplegic patients with and without shoulder pain. Top Stroke Rehabil. 2014;21(3):237-45. [Crossref] [PubMed]
- Dabholkar A, Mehta D, Yardi S, Dabholkar T. Assessment of scapular behavior in stroke patients. Int J Health Rehabil Sci. 2015;4(2):95-102. [Crossref]
- Murie-Fernandez M, Carmona Iragui M, Gnanakumar V, Meyer M, Foley N, Teasell R. [Painful hemiplegic shoulder in stroke patients: causes and management]. Neurologia. 2012;27(4):234-44. [Crossref] [PubMed]
- De Baets L, Jaspers E, Janssens L, Van Deun S. Characteristics of neuromuscular control of the scapula after stroke: a first exploration. Front Hum Neurosci. 2014;8:933. [Crossref] [PubMed] [PMC]
- Frontera WR, Grimby L, Larsson L. Firing rate of the lower motoneuron and contractile properties of its muscle fibers after upper motoneuron lesion in man. Muscle Nerve. 1997;20(8):938-47. [Crossref]
- De Baets L, Jaspers E, Van Deun S. Scapulohumeral control after stroke: a preliminary study of the test-retest reliability and discriminative validity of a clinical scapular protocol (ClinScaP). NeuroRehabilitation. 2016;38(4):359-70. [Crossref] [PubMed]
- Kibler WB, Ludewig PM, McClure PW, Michener LA, Bak K, Sciascia AD. Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the 'Scapular Summit'. Br J Sports Med. 2013;47(14):877-85. [Crossref] [PubMed]
- Rundquist PJ, Dumit M, Hartley J, Schultz K, Finley MA. Three-dimensional shoulder complex kinematics in individuals with upper extremity impairment from chronic stroke. Disabil Rehabil. 2012;34(5):402-7. [Crossref] [PubMed]
- Niessen M, Janssen T, Meskers C, Koppe P, Konijnenbelt M, Veeger D. Kinematics of the contralateral and ipsilateral shoulder: a possible relationship with post-stroke shoulder pain. J Rehabil Med. 2008;40(6):482-6. [Crossref] [PubMed]
- Moraes GF, Faria CD, Teixeira-Salmela LF. Scapular muscle recruitment patterns and isokinetic strength ratios of the shoulder rotator muscles in individuals with and without impingement syndrome. J Shoulder Elbow Surg. 2008;17(1 Suppl):48S-53S. [Crossref] [PubMed]
- Worsley P, Warner M, Mottram S, Gadola S, Veeger HE, Hermens H, et al. Motor control retraining exercises for shoulder impingement: effects on function, muscle activation, and biomechanics in young adults. J Shoulder Elbow Surg. 2013;22(4):e11-9. [Crossref] [PubMed] [PMC]
- Lixandrao MC, Camargo PR, Scarpa CEN, Prado-Medeiros CL, Salvini TF. Bilateral changes in 3-D scapular kinematics in individuals with chronic stroke. Clin Biomech (Bristol, Avon). 2017;47:79-86. [Crossref] [PubMed]
- Tate AR, McClure P, Kareha S, Irwin D, Barbe MF. A clinical method for identifying scapular dyskinesis, part 2: validity. J Athl Train. 2009;44(2):165-73. [Crossref] [PubMed] [PMC]
- De Baets L, Jaspers E, Desloovere K, Van Deun S. A systematic review of 3D scapular kinematics and muscle activity during elevation in stroke subjects and controls. J Electromyogr Kinesiol. 2013;23(1):3-13. [Crossref] [PubMed]
- Larsen CM, Juul-Kristensen B, Lund H, Sogaard K. Measurement properties of existing clinical assessment methods evaluating scapular positioning and function. A systematic review. Physiother Theory Pract. 2014;30(7):453-82. [Crossref] [PubMed]
- McClure P, Tate AR, Kareha S, Irwin D, Zlupko E. A clinical method for identifying scapular dyskinesis, part 1: reliability. J Athl Train. 2009;44(2):160-4. [Crossref] [PubMed] [PMC]
- Marciniak C. Poststroke hypertonicity: upper limb assessment and treatment. Top Stroke Rehabil. 2011;18(3):179-94. [Crossref] [PubMed]
- Davies PM. Steps to Follow: A Guide to the Treatment of Adult Hmiplegia. 1st ed. Berlin: Springer-Verlag; 1985. p.300. [Crossref]
- Ryerson S, Levit K. The shoulder in hemiplegia. In: Donatelli RA, ed. Physical Therapy of The Shoulder. 3rd ed. New York: Churchill Livingstone; 2004. p.205-27. [Crossref]
- Liu W, McCombe Waller S, Kepple TM, Whitall J. Compensatory arm reaching strategies after stroke: induced position analysis. J Rehabil Res Dev. 2013;50(1):71-84. [Crossref] [PubMed] [PMC]
- McCrea PH, Eng JJ, Hodgson AJ. Saturated muscle activation contributes to compensatory reaching strategies after stroke. J Neurophysiol. 2005;94(5):2999-3008. [Crossref] [PubMed] [PMC]
- Lee JA, Kim EJ, Hwang PW, Park HR, Bae JH, Kim JN. Three-dimensional kinematic motion analysis of door handling task in people with mild and moderate stroke. Phys Ther Rehabil Sci. 2016;5(3):143-8. [Crossref]
.: Process List