For approximately 2 centuries, the estimation of ancestry, sex, and age from skull measurements has been one of the issues of anthropology. Since the first studies of skull thickness in 1879, measurements were first made with calipers, and then with technological developments over time are also now made with X-rays, computed tomography examinations, ultrasound and magnetic resonance imaging. Skull thickness was used for several clinical purposes in medicine, such as determining the most suitable area for bone grafts, deciding on the appropriate area in the temporal bone for hearing aid application, monitoring changes in bone thickness in various diseases and treatments, etc. It has also been used for forensic identification, and to explain the mechanism of skull fractures in forensic medicine, although it was described in a limited number of articles. The aim of this study is to make a detailed literature review of the historical development of skull thickness measurement techniques, including the use of skull thickness measurements in forensic identification and skull fracture mechanism. It can be foreseen that skull thickness will be an indispensable part of forensic identification, especially in skeletons, together with the mapping method, an example of which has been carried out. Likewise, there is no doubt that measuring the thickness of the regions where the fracture lines pass in the skulls and the bone density of these regions by scintigraphy and combining them with the 3D Finite Element Model will lead to new ideas about the mechanism of fracture formation.
Keywords: Skull thickness; forensic identification; X-ray; computed tomography; ultrasonography
Yaklaşık 2 yüzyıldır kafatası ölçümlerinden; soy, cinsiyet ve yaş tahmini, antropolojinin konularından biri olmuştur. 1879 yılındaki kafatası kalınlığı üzerine gerçekleştirilen ilk çalışmalardan bu yana önce kumpas yardımı ile ölçümler yapılmış, daha sonraki zamanlarda teknolojinin gelişmesi ile birlikte X ışını, bilgisayarlı tomografi, ultrasonografi ve manyetik rezonans görüntüleme gibi radyolojik teknikler de kullanılmaya başlanmıştır. Kafatası kalınlığı; tıpta kemik greftleri alımı için en uygun alanın belirlenmesi, işitme cihazı uygulanması için temporal kemikteki en uygun alana karar verilmesi, çeşitli hastalık ve tedavilerde kemik kalınlığındaki değişikliklerin izlenmesi gibi çeşitli klinik amaçlar için kullanılmıştır. Ayrıca sınırlı sayıda makalede tanımlanmış da olsa adli tıpta adli kimlik tespiti ve kafatası kırıklarının mekanizmasını açıklamak için de kullanılmıştır. Bu çalışmanın amacı, kafatası kalınlığı ölçümlerinin adli kimliklendirme ve kafatası kırılma mekanizmasında kullanımı da dâhil olmak üzere kafatası kalınlığı ölçüm tekniklerinin tarihsel gelişimi hakkında ayrıntılı bir literatür taraması yapmaktır. Özellikle iskelet formunda bulunan cesetlerde, yakın bir gelecekte kafatası kalınlıklarının, bir örneği gerçekleştirilmiş olan haritalama metodu ile birlikte adli kimlik tespitinin vazgeçilmez bir parçası olacağı öngörülebilir. Aynı şekilde, kafataslarındaki lineer kırıkların geçtiği bölgelerin kalınlıklarının ve bu bölgelerin kemik yoğunluğunun sintigrafiyle ölçülmesi ve bunun 3D Finite Element Model ile birleştirilmesinin, kırığın oluşum mekanizması hakkında bugüne kadar tanımlananların ötesinde yeni fikirlere yol açacağından şüphe yoktur.
Anahtar Kelimeler: Kafatası kalınlığı; adli kimliklendirme; X ışını; bilgisayarlı tomografi; ultrasonografi
- Krause W. Handbuch der Menschlichen Anatomie. 3rd ed. Hannover: Hahn'sehe Buchhandlung; 1879. [Link]
- Hwang K, Kim JH, Baik SH. Thickness map of parietal bone in Korean adults. J Craniofac Surg. 1997;8(3):208-12. [Crossref] [PubMed]
- Tellioğlu AT, Yilmaz S, Baydar S, Tekdemir I, Elhan AH. Computed tomographic evaluation before cranial bone harvesting to avoid unexpected hazards during aesthetic procedures. Aesthetic Plast Surg. 2001;25(3):198-201. [Crossref] [PubMed]
- Jung YS, Kim HJ, Choi SW, Kang JW, Cha IH. Regional thickness of parietal bone in Korean adults. Int J Oral Maxillofac Surg. 2003;32(6): 638-41. [Crossref] [PubMed]
- Pensler J, McCarthy JG. The calvarial donor si te: an anatomic study in cadavers. Plast Recon str Surg. 1985;75(5):648-51. [Crossref] [PubMed]
- Stölzel K, Bauknecht C, Wernecke K, Schrom T. Sonographische bestimmung der kalottendicke [Measurement of skull thickness by ultrasound]. Laryngorhinootologie. 2007;86(2): 107-11. [Crossref] [PubMed]
- Federspil PA, Tretbar SH, Böhlen FH, Rohde S, Glaser S, Plinkert PK. Measurement of skull bone thickness for bone-anchored hearing aids: an experimental study comparing both a novel ultrasound system (SonoPointer) and computed tomographic scanning to mechanical measurements. Otol Neurotol. 2010; 31(3):440-6. [Crossref] [PubMed]
- Noakovic D, Meller CJ, Makeham JM, Brazier DH, Forer M, Patel NP. Computed tomographic analysis of outer calvarial thickness for osseointegrated bone-anchored hearing system insertion. Otol Neurotol. 2011;32(3): 448-52. [Crossref] [PubMed]
- Arntsen T, Kjaer I, Sonnesen L. Skull thickness in patients with skeletal Class II and Class III malocclusions. Orthod Craniofac Res. 2008; 11(4):229-34. [Crossref] [PubMed]
- Jacobsen PE, Kjaer I, Sonnesen L. Skull thickness in patients with skeletal deep bite. Orthod Craniofac Res. 2008;11(2):119-23. [Crossref] [PubMed]
- Nelson RF, Hansen KR, Gantz BJ, Hansen MR. Calvarium thinning in patients with spontaneous cerebrospinal fluid leak. Otol Neurotol. 2015;36(3):481-5. [Crossref] [PubMed]
- Chauveau N, Franceries X, Doyon B, Rigaud B, Morucci JP, Celsis P. Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a sphe rical three-dimensional resistor mesh model. Hum Brain Mapp. 2004;21(2):86-97. [Crossref] [PubMed] [PMC]
- Hagemann D, Hewig J, Walter C, Naumann E. Skull thickness and magnitude of EEG alpha activity. Clin Neurophysiol. 2008;119(6): 1271-80. [Crossref] [PubMed]
- Reimann F, Talasli U, Gökmen E. Zur röntgenologischen bestimmung der dicke der schädeiknochen und ihrer verbreiterung bei patienten mit schwerer bluterkrankung und hyperplasie des roten knochenmarks [For radiographic determination of the thickness of the skull bones and their widening in patients with severe blood disease and hyperplasia of the red bone marrow]. Fortschr Röntgenstr. 1976; 125(6):540-5. [Crossref] [PubMed]
- Kattan KR. Calvarial thickening after Dilantin medication. Am J Roentgenol Radium Ther Nucl Med. 1970;110(1):102-5. [Crossref] [PubMed]
- Todd TW. Thickness of the male white cranium. The Anatomical Record. 1924;27(5): 245-56. [Crossref]
- Roche AF. Increase in cranial thickness during growth. Hum Biol. 1953;25(2):81-92. [PubMed]
- Hansman CF. Growth of interorbital distance and skull thickness as observed in roentgenographic measurements. Radiology. 1966; 86(1):87-96. [Crossref] [PubMed]
- Adeloye A, Kattan KR, Silverman FN. Thickness of the normal skull in the American Blacks and Whites. Am J Phys Anthropol. 1975;43(1):23-30. [Crossref] [PubMed]
- Moreira-Gonzalez A, Papay FE, Zins JE. Calvarial thickness and its relation to cranial bone harvest. Plast Reconstr Surg. 2006;117(6): 1964-71. [Crossref] [PubMed]
- Hatipoglu HG, Ozcan HN, Hatipoglu US, Yuksel E. Age, sex and body mass index in relation to calvarial diploe thickness and craniometric data on MRI. Forensic Sci Int. 2008;182(1-3):46-51. [Crossref] [PubMed]
- Smith K, Politte D, Reiker G, Nolan TS, Hildebolt C, Mattson C, et al. Automated measurement of pediatric cranial bone thickness and density from clinical computed tomography. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4462-5. [Crossref] [PubMed] [PMC]
- Baral P, Koirala S, Gupta MK. Calvarial thickness of Nepalese skulls-Computerised Tomographic (CT) study. Anat Physiol. 2014;4(2): 1000140. [Link]
- Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res. 2016;31(2):299-307. [Crossref] [PubMed]
- Thulung S, Ranabhat K, Bishokarma S, Gongal DN. Morphometric measurement of cranial vault thickness: a tertiary hospital based study. JNMA J Nepal Med Assoc. 2019;57(215):29-32. [Crossref] [PubMed]
- Domenech-Fernandez P, Yamane J, Domenech J, Barrios C, Soldado-Carrera F, Knorr J, et al. Analysis of skull bone thickness during growth: an anatomical guide for safe pin placement in halo fixation. Eur Spine J. 2021;30(2):410-5. [Crossref] [PubMed]
- Ross MD, Lee KA, Castle WM. Skull thickness of Black and White races. S Afr Med J. 1976;50(16):635-8. [PubMed]
- Brown T, Pinkerton SK, Lambert W. Thickness of the cranial vault in Australian Aboriginals. Archaeology & Physical Anthropology in Oceania. 1979;14(1):54-71. [Link]
- Durbar US. Racial variations in different skulls. J Pharm Sci & Res. 2014;6(11):370-2. [Link]
- Ross AH, Jantz RL, McCormick WF. Cranial thickness in American females and males. J Forensic Sci. 1998;43(2):267-72. [Crossref] [PubMed]
- Smith DR, Limbird KG, Hoffman JM. Identification of human skeletal remains by comparison of bony details of the cranium using computerized tomographic (CT) scans. J Forensic Sci. 2002;47(5):937-9. [Crossref] [PubMed]
- Li H, Ruan J, Xie Z, Wang H, Liu W. Investigation of the critical geometric characteristics of living human skulls utilising medical image analysis techniques. Int J Vehicle Safety. 2007;4(2):345-67. [Crossref]
- Sidler M, Jackowski C, Dirnhofer R, Vock P, Thali M. Use of multislice computed tomography in disaster victim identification--advantages and limitations. Forensic Sci Int. 2007; 169(2-3):118-28. [Crossref] [PubMed]
- Mahinda HAM, Murthy OP. Variability in thickness of human skull bones and sternum- an autopsy experience. Journal of Forensic Medicine & Toxicology. 2009;26(2):26-31. [Link]
- Farzana F, Shah BA, Shahdad S, Zia ul Haq P, Sarmast A, Ali Z. Computed tomographic scanning measurement of skull bone thickness: a single center study. Int J Res Med Sci. 2018;6(3):913-6. [Crossref]
- Dougherty G, Newman D. Measurement of thickness and density of thin structures by computed tomography: a simulation study. Med Phys. 1999;26(7):1341-8. [Crossref] [PubMed]
- Ruan J, Prasad P. The effects of skull thickness variations on human head dynamic impact responses. Stapp Car Crash J. 2001;45: 395-414. [Crossref] [PubMed]
- Delye H, Verschueren P, Depreitere B, Verpoest I, Berckmans D, Vander Sloten J, et al. Biomechanics of frontal skull fracture. J Neurotrauma. 2007;24(10):1576-86. [Crossref] [PubMed]
- Got C, Guillon F, Patel A, Mack P, Brun-Cassan F, Fayon A, et al. Morphological and biomechanical study of 146 human skulls used in experimental impacts, in relation with the observed injuries. SAE Transactions. 1983; 92(4):528-46. [Crossref]
- Hodgson VR, Brinn J, Thomas LM, Greenberg SW. Fracture behavior of the skull frontal bone against cylindrical surfaces. SAE Technical Paper. 1970:700909. [Crossref]
- Deck C, Nicolle S, Willinger R. Human head FE modelling: improvement of skull geometry and brain constitutive laws. IRCOBI Conference-Graz (Austria); 2004. p.7992. [Link]
- Raul JS, Baumgartner D, Willinger R, Ludes B. Finite element modelling of human head injuries caused by a fall. Int J Legal Med. 2006;120(4):212-8. [Crossref] [PubMed]
- Law SK. Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr. 1993;6(2):99-109. [Crossref] [PubMed]
- Raul JS, Deck C, Willinger R, Ludes B. Finite-element models of the human head and their applications in forensic practice. Int J Legal Med. 2008;122(5):359-66. [Crossref] [PubMed]
- Raymond D, Van Ee C, Crawford G, Bir C. Tolerance of the skull to blunt ballistic temporo-parietal impact. J Biomech. 2009;42(15): 2479-85. [Crossref] [PubMed]
- Hamel A, Llari M, Piercecchi-Marti MD, Adalian P, Leonetti G, Thollon L. Effects of fall conditions and biological variability on the mechanism of skull fractures caused by falls. Int J Legal Med. 2013;127(1):111-8. [Crossref] [PubMed]
- Delye H, Clijmans T, Mommaerts MY, Sloten JV, Goffin J. Creating a normative database of age-specific 3D geometrical data, bone density, and bone thickness of the developing skull: a pilot study. J Neurosurg Pediatr. 2015;16(6):687-702. [Crossref] [PubMed]
- Foville M. Traité Complet De L'anatomie, De La Physiologie Et De La Pathologie Du Système Nerveux Cérébro-Spinal. 1st ed. Paris: Fortin, Masson Et Cie; 1844. [Link]
- Baer CEV, Lucae JGC. Zur Morphologie der Rassen-Schädel. Einleitende Bemerkungen Und Beiträge. 1. Auflage. Frankfurt: Druck Und Verlag von Heinrich Ludwig Brönner; 1861. [Link]
- Broca MP. Sur Le Volume Et La Forme Du Cerveau. Suivant Les Individus Et Suivant Les Races. 1st ed. Paris: Typographie Hennuyer, Rue Du Boulevard; 1861. [Link]
- Henle J. Handbuch der Systematischen Anatomie des Menschen. 3rd ed. Braunschweig: Druck Und Verlag von Friedrich Vieweg Und Sohn; 1871. [Link]
- Todd TW. Cranial capacity and linear dimensions, in white and negro. Am J Phys Anthropol. 1923;6(2):97-194. [Crossref]
- Todd TW. The effect of maceration and drying upon the linear dimensions of the green skull. J Anat. 1923;57(Pt 4):336-56. [PubMed] [PMC]
- Anderson RJ. Observations on the thickness of the human skull. The Dublin Journal of Medical Science. 1882;74:270-80. [Crossref]
- Twiesselmann F. Méthode pour l'évaluation de l'épaisseur des parois crâniennes. Bulletin Du Musée Royal d'Histoire Naturelle de Belgique. 1941; 17(48):1-33. [Link]
- Ivanhoe F. Direct correlation of human skull vault thickness with geomagnetic intensity in some Northern Hemisphere Populations. Journal of Human Evolution. 1979;8:433-44. [Crossref]
- Sullivan WG, Smith AA. The split calvarial graft donor site in the elderly: a study in cadavers. Plast Reconstr Surg. 1989;84(1):29-31. [Crossref] [PubMed]
- Ishida H, Dodo Y. Cranial thickness of modern and neolithic populations in Japan. Hum Biol. 1990;62(3):389-401. [PubMed]
- Broadbent BH. A new x-ray technique and its application to orthodontia. The Angle Orthodontist. 1931;1(2):45-66. [Link]
- Letts M, Kaylor D, Gouw G. A biomechanical analysis of halo fixation in children. J Bone Joint Surg Br. 1988;70(2):277-9. [Crossref] [PubMed]
- Koenig WJ, Donovan JM, Pensler JM. Cranial bone grafting in children. Plast Reconstr Surg. 1995;95(1):1-4. [Crossref] [PubMed]
- Newman DL, Dougherty G, al Obaid A, al Hajrasy H. Limitations of clinical CT in assessing cortical thickness and density. Phys Med Biol. 1998;43(3):619-26. [Crossref] [PubMed]
- Prevrhal S, Engelke K, Kalender WA. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol. 1999;44(3):751-64. [Crossref] [PubMed]
- Prevrhal S, Fox JC, Shepherd JA, Genant HK. Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys. 2003;30(1):1-8. [Crossref] [PubMed]
- Chompoopongkasem K, Chandraphak S, Chiewvit P, Aojanepong C. [Calvarial thickness and its correlation to three-dimensional CT (3D-CT) scan]. Reg 6-7 Med J. 2008;27(4): 1171-83. [Link]
- Tretbar SH, Plinkert PK, Federspil PA. Accuracy of ultrasound measurements for skull bone thickness using coded signals. IEEE Trans Biomed Eng. 2009;56(3):733-40. [Crossref] [PubMed]
- Voie A, Dirnbacher M, Fisher D, Hölscher T. Parametric mapping and quantitative analysis of the human calvarium. Comput Med Imaging Graph. 2014;38(8):675-82. [Crossref] [PubMed]
.: Process List