Herpes simpleks virüsleri (HSV), 2500 yıldan uzun süredir hayatımızda olan ve her yıl 23 milyondan fazla yeni vaka ile dünya çapında en sık rastlanılan viral enfeksiyonlara neden olmaktadır. Herpes virüslerinin ayırt edici özelliği, tekrarlayan enfeksiyonlar üretme yetenekleridir. Bu virüslerin neden olduğu enfeksiyonlar, dünya çapında en yaygın viral enfeksiyonlardandır ve yaşam boyu belirli aralıklarla enfeksiyona yol açabilirler. HSV-1 enfeksiyonları, öncelikle dudak ve ağız içi kabarcıklar ve inflamasyon dâhil olmak üzere hafif semptomlarla ilişkilidir. Ancak bazı durumlarda körlük, işitme bozukluğu ve ölümcül ensefalit gibi daha ciddi hastalıklara neden olabilmektedir. HSV-1 nöronal enfeksiyonunun Alzheimer hastalığının patogenezinde rol oynayabileceğine dair artan kanıtlar da bulunmaktadır. Benzer şekilde, HSV-2 enfeksiyonları hafif genital lezyonlara neden olabilmektedir. Ayrıca insan immün yetmezlik virüsü enfeksiyonlarını edinme ve iletme riskini artırabilmektedir. HSV enfeksiyonları, hem doğal hem de adaptif bağışıklığı tetikler. Bu enfeksiyonların spesifik bir tedavisi yoktur. Hafif komplikasyonlar arasında olan yaralar genellikle tedaviye ihtiyaç duyulmaksızın geçmektedir. HSV, dünya çapında yaygın bir enfeksiyon olması, ciddi klinik sonuçları olan yaşam boyu enfeksiyonlara neden olması nedeniyle bu virüse karşı profilaktik ve terapötik aşı geliştirme çalışmaları devam etmektedir. Bugüne kadar alt ünite, canlı zayıflatılmış, replikasyon kusurlu virüs bazlı, nükleik asit temelli birçok aşı geliştirilmiş olmasına rağmen geliştirilen hiçbir aşı beklenilen oranda koruma sağlayamamıştır. Bu geleneksel derlemede, HSV hakkında genel bilgiler verilerek mevcut aşı çalışmaları değerlendirilmiştir
Anahtar Kelimeler: Herpes simpleks virüsü-1; Herpes simpleks virüsü-2; viral enfeksiyon; aşı; aşı geliştirme
Herpes simplex viruses (HSV) have been in our lives for more than 2500 years. It causes the most common viral infections worldwide, with more than 23 million new cases each year. A distinctive feature of herpes viruses is their ability to produce recurrent infections. Infections caused by these viruses are among the most common viral infections worldwide and can lead to infection at certain intervals throughout life. HSV-1 infections are primarily associated with mild symptoms, including blisters and inflammation of the mouth and lips, but in some cases can cause more serious diseases such as blindness, hearing impairment and fatal encephalitis. There is also increasing evidence that HSV-1 neuronal infection may play a role in the pathogenesis of Alzheimer's disease. Similarly, HSV-2 infections can cause mild genital lesions. It may also increase the risk of acquiring and transmitting human immunodeficiency virus infections. HSV infections trigger both innate and adaptive immunity. There is no specific treatment for these infections. Wounds with mild complications usually heal without the need for treatment. As HSV is a common infection worldwide and has serious clinical consequences and causes lifelong infections, prophylactic and therapeutic vaccine development studies are ongoing against this virus. Although many subunit, live attenuated, replication-defective virus-based and nucleic acid-based vaccines have been developed to date, none of the vaccines developed have been able to provide protection at the expected level. In this traditional review, current vaccine studies were evaluated by giving general information about HSV.
Keywords: Herpes simplex virus-1; herpes simplex virus-2; viral infection; vaccine; vaccine development
- Roizman B, Knipe D, Whitley R. Herpes simplex viruses. In: Knipe D, Howley P, eds. Fields Virology. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p.1823-97.
- Beswick TS. The origin and the use of the word herpes. Med Hist. 1962;6(3):214-32. [Crossref] [PubMed] [PMC]
- Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of herpes simplex virus types 1 and 2--United States, 1999-2010. J Infect Dis. 2014;209(3):325-33. [Crossref] [PubMed]
- Reske A. The innate immune response to HSV-1: glycoprotein mediated activation of dendritic cells. [Doctoral thesis]. London: University College London, Department of Immunology; 2009. Erişim tarihi: 20 Mart 2022. Erişim linki: [Link]
- Lan K, Luo MH. Herpesviruses: epidemiology, pathogenesis, and interventions. Virol Sin. 2017;32(5):347-8. [Crossref] [PubMed] [PMC]
- Liu F, Zhou ZH. Comparative virion structures of humanherpesviruses. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al, eds. Chapter 3. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007.
- Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57(5):448-62. [Crossref] [PubMed] [PMC]
- Ashley RL. Sorting out the new HSV type specific antibody tests. Sex Transm Infect. 2001;77(4):232-7. [Crossref] [PubMed] [PMC]
- Plotkin SA, Orestein WA, Offit PA, Edwards KM. 7th ed. Plotkin's Vaccines. Chapter 28. Amsterdam: Elsevier; 2017.
- Karasneh GA, Shukla D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J. 2011;8:481. [Crossref] [PubMed] [PMC]
- Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol. 2018;25(5):416-24. [Crossref] [PubMed] [PMC]
- Gianni T, Salvioli S, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G. αvβ6- and αvβ8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog. 2013;9(12):e1003806. [Crossref] [PubMed] [PMC]
- Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH. Herpes virus fusion and entry: a story with many characters. Viruses. 2012;4(5):800-32. [Crossref] [PubMed] [PMC]
- Fontana J, Atanasiu D, Saw WT, Gallagher JR, Cox RG, Whitbeck JC, et al. The fusion loops of the initial prefusion conformation of herpes simplex virus 1 fusion protein point toward the membrane. mBio. 2017;8(4):e01268-17. [Crossref] [PubMed] [PMC]
- Weed DJ, Nicola AV. Herpes simplex virus membrane fusion. Adv Anat Embryol Cell Biol. 2017;223:29-47. [Crossref] [PubMed] [PMC]
- Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol. 2019;29(4):e2054. [Crossref] [PubMed] [PMC]
- Koelle DM. Immunobiology and host response. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., eds. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007.
- Campadelli-Fiume G, Menotti L, Avitabile E, Gianni T. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr Opin Virol. 2012;2(1):28-36. [Crossref] [PubMed]
- Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008;6(3):211-21. [Crossref] [PubMed]
- Smith G. Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153-76. [Crossref] [PubMed] [PMC]
- Kim HC, Lee HK. Vaccines against genital herpes: where are we? Vaccines (Basel). 2020;8(3):420. [Crossref] [PubMed] [PMC]
- Amin I, Younas S, Afzal S, Shahid M, Idrees M. Herpes simplex virus type 1 and host antiviral immune responses: an update. Viral Immunol. 2019;32(10):424-9. [Crossref] [PubMed]
- Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491-6. [Crossref] [PubMed]
- Melchjorsen J, Matikainen S, Paludan SR. Activation and evasion of innate antiviral immunity by herpes simplex virus. Viruses. 2009;1(3):737-59. [Crossref] [PubMed] [PMC]
- Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461-88. [Crossref] [PubMed]
- Hook LM, Awasthi S, Dubin J, Flechtner J, Long D, Friedman HM. A trivalent gC2/gD2/gE2 vaccine for herpes simplex virus generates antibody responses that block immune evasion domains on gC2 better than natural infection. Vaccine. 2019;37(4):664-9. [Crossref] [PubMed] [PMC]
- Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci. 2019;76(3):405-19. [Crossref] [PubMed] [PMC]
- Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf. 2019;17(1):40-9. [Crossref] [PubMed] [PMC]
- Looker KJ, Elmes JAR, Gottlieb SL, Schiffer JT, Vickerman P, Turner KME, et al Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis. 2017;17(12):1303-16. [Crossref] [PubMed] [PMC]
- Agelidis AM, Shukla D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 2015;10(10):1145-54. [Crossref] [PubMed] [PMC]
- Bruno E, Pillus D, Cheng D, Vilke G, Pokrajac N. During the emergency department evaluation of a well-appearing neonate with fever, should empiric acyclovir be initiated? J Emerg Med. 2018;54(2):261-5. [Crossref] [PubMed]
- Green J. Psychosocial issues in genital herpes management. Herpes. 2004;11(3):60-2. [PubMed]
- Lövheim H, Gilthorpe J, Johansson A, Eriksson S, Hallmans G, Elgh F. Herpes simplex infection and the risk of Alzheimer's disease: a nested case-control study. Alzheimers Dement. 2015;11(6):587-92. [Crossref] [PubMed]
- Li Puma DD, Piacentini R, Leone L, Gironi K, Marcocci ME, De Chiara G, et al. Herpes Simplex virus type-1 infection ımpairs adult hippocampal neurogenesis via amyloid-β protein accumulation. Stem Cells. 2019;37(11):1467-80. [Crossref] [PubMed]
- Linard M, Letenneur L, Garrigue I, Doize A, Dartigues JF, Helmer C. Interaction between APOE4 and herpes simplex virus type 1 in Alzheimer's disease. Alzheimers Dement. 2020;16(1):200-8. [Crossref] [PubMed]
- Johnston C, Morrow RA, Stanberry LR. Human herpesviruses: herpes simplex viruses types 1 and 2. In: Kaslow RA, Stanberry LR, LeDuc JW, eds. Viral Infections of Humans: Epidemiology and Control. 5th ed. New York, NY: Springer; 2014. p.829-54. [Crossref]
- Looker KJ, Garnett GP. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex Transm Infect. 2005;81(2):103-7. [Crossref] [PubMed] [PMC]
- Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis. 2002;186 Suppl 1:S3-28. [Crossref] [PubMed]
- Ike AC, Onu CJ, Ononugbo CM, Reward EE, Muo SO. Immune response to herpes simplex virus infection and vaccine development. Vaccines (Basel). 2020;8(2):302. [Crossref] [PubMed] [PMC]
- Rafferty E, McDonald W, Qian W, Osgood ND, Doroshenko A. Evaluation of the effect of chickenpox vaccination on shingles epidemiology using agent-based modeling. PeerJ. 2018;6:e5012. [Crossref] [PubMed] [PMC]
- Bernstein DI, Flechtner JB, McNeil LK, Heineman T, Oliphant T, Tasker S, et al; Genocea study group. Therapeutic HSV-2 vaccine decreases recurrent virus shedding and recurrent genital herpes disease. Vaccine. 2019;37(26):3443-50. [Crossref] [PubMed]
- Awasthi S, Hook LM, Shaw CE, Friedman HM. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model. Hum Vaccin Immunother. 2017;13(12):2785-93. [Crossref] [PubMed] [PMC]
- Khodai T, Chappell D, Christy C, Cockle P, Eyles J, Hammond D, et al. Single and combination herpes simplex virus type 2 glycoprotein vaccines adjuvanted with CpG oligodeoxynucleotides or monophosphoryl lipid A exhibit differential immunity that is not correlated to protection in animal models. Clin Vaccine Immunol. 2011;18(10):1702-9. [Crossref] [PubMed] [PMC]
- Mundle ST, Hernandez H, Hamberger J, Catalan J, Zhou C, Stegalkina S, et al. High-purity preparation of HSV-2 vaccine candidate ACAM529 is immunogenic and efficacious in vivo. PLoS One. 2013;8(2):e57224. [Crossref] [PubMed] [PMC]
- Srivastava R, Roy S, Coulon PG, Vahed H, Prakash S, Dhanushkodi N, et al. Therapeutic mucosal vaccination of herpes simplex virus 2-infected guinea pigs with ribonucleotide reductase 2 (RR2) protein boosts antiviral neutralizing antibodies and local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. J Virol. 2019;93(9):e02309-18. [Crossref] [PubMed] [PMC]
- Whitley R, Baines J. Clinical management of herpes simplex virus infections: past, present, and future. F1000Res. 2018;7:F1000 Faculty Rev-1726. [Crossref] [PubMed] [PMC]
- Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948-52. [Crossref] [PubMed]
- Corey L, Langenberg AG, Ashley R, Sekulovich RE, Izu AE, Douglas JM Jr, et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA. 1999;282(4):331-40. [Crossref] [PubMed]
- Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS, Saied AA, et al. A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One. 2014;9(10):e109890. [Crossref] [PubMed] [PMC]
- Awasthi S, Hook LM, Shaw CE, Pahar B, Stagray JA, Liu D, et al. An HSV-2 trivalent vaccine is immunogenic in rhesus macaques and highly efficacious in guinea pigs. PLoS Pathog. 2017;13(1):e1006141. [Crossref] [PubMed] [PMC]
- Egan KP, Hook LM, Naughton A, Pardi N, Awasthi S, Cohen GH, et al. An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection. PLoS Pathog. 2020;16(7):e1008795. [Crossref] [PubMed] [PMC]
- Cairns TM, Huang ZY, Whitbeck JC, Ponce de Leon M, Lou H, Wald A, et al. Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol. 2014;88(21):12612-22. [Crossref] [PubMed] [PMC]
- LeRoux-Roels G, Moreau E, Desombere I. Persistence of humoral and cellular immune response and booster effect following vaccination with herpes simplex 9gD2t) candidate vaccine with MPL. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy; Orlando USA; 4-7 October; 1994.
- Belshe RB, Leone PA, Bernstein DI, Wald A, Levin MJ, Stapleton JT, et al; Herpevac trial for women. Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med. 2012;366(1):34-43. [Crossref] [PubMed] [PMC]
- Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis. 2012;54(11):1615-7. [Crossref] [PubMed] [PMC]
- Stanberry LR, Cunningham AL, Mindel A, Scott LL, Spruance SL, Aoki FY, et al. Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis. 2000;30(3):549-66. [Crossref] [PubMed]
- Awasthi S, Huang J, Shaw C, Friedman HM. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes. J Virol. 2014;88(15):8421-32. [Crossref] [PubMed] [PMC]
- Petro C, González PA, Cheshenko N, Jandl T, Khajoueinejad N, Bénard A, et al. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. Elife. 2015;4:e06054. [Crossref] [PubMed] [PMC]
- Aurelian L. Herpes simplex virus type 2 vaccines: new ground for optimism? Clin Diagn Lab Immunol. 2004;11(3):437-45. [Crossref] [PubMed] [PMC]
- Iyer AV, Pahar B, Chouljenko VN, Walker JD, Stanfield B, Kousoulas KG. Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol J. 2013;10:317. [Crossref] [PubMed] [PMC]
- Stanfield BA, Rider PJF, Caskey J, Del Piero F, Kousoulas KG. Intramuscular vaccination of guinea pigs with the live-attenuated human herpes simplex vaccine VC2 stimulates a transcriptional profile of vaginal Th17 and regulatory Tr1 responses. Vaccine. 2018;36(20):2842-9. [Crossref] [PubMed]
- Kim HC, Oh DS, Park JH, Kim HJ, Seo YB, Yoo HJ, et al. Multivalent DNA vaccine protects against genital herpes by T-cell immune induction in vaginal mucosa. Antiviral Res. 2020;177:104755. [Crossref] [PubMed]
- Zhou Y, Wang Z, Xu Y, Zhang Z, Hua R, Liu W, et al. Optimized DNA vaccine enhanced by adjuvant IL28B induces protective immune responses against herpes simplex virus type 2 in mice. Viral Immunol. 2017;30(8):601-14. [Crossref] [PubMed]
- Ogasawara M, Suzutani T, Yoshida I, Azuma M. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: location of UL25 product in the capsid and demonstration that it binds DNA. J Virol. 2001;75(3):1427-36. [Crossref] [PubMed] [PMC]
- Liu W, Zhou Y, Wang Z, Zhang Z, Wang Q, Su W, et al. Evaluation of recombinant adenovirus vaccines based on glycoprotein D and truncated UL25 against herpes simplex virus type 2 in mice. Microbiol Immunol. 2017;61(5):176-84. [Crossref] [PubMed]
- Cunningham AL, Mikloska Z. The Holy Grail: immune control of human herpes simplex virus infection and disease. Herpes. 2001;8 Suppl 1:6A-10A. [PubMed]
- Blank H, Haines HG. Experimental human reinfection with herpes simplex virus. J Invest Dermatol. 1973;61(4):223-5. [Crossref] [PubMed]
- Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev. 2003;16(1):96-113. [Crossref] [PubMed] [PMC]
- Shin H, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature. 2012;491(7424):463-7. [Crossref] [PubMed] [PMC]
- Morello CS, Levinson MS, Kraynyak KA, Spector DH. Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease. J Virol. 2011;85(7):3461-72. [Crossref] [PubMed] [PMC]
- Allen SJ, Hamrah P, Gate D, Mott KR, Mantopoulos D, Zheng L, et al. The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1. J Virol. 2011;85(9):4184-97. [Crossref] [PubMed] [PMC]
.: Process List