Böbrek yetmezlikleri, organ fonksiyonlarında azalma ile kendini gösteren; her yaştaki hayvanda, özellikle yaşlı hayvanlarda çok görülen önemli bir hastalıktır. Özellikle kronik böbrek yetmezliği, böbrek fonksiyonlarında geri dönüşümü olmayan azalma ile karakterizedir ve en fazla tespit edilen böbrek hastalığıdır. Böbrek hastalıklarında erken teşhis, etkili tedavi uygulamalarının yapılabilmesi açısından önem taşır. Kronik böbrek hastalığının tanısı, küçük hayvan pratiğinin önemli bir parçasıdır. Kreatinin, hastalığın erken teşhisinde yetersiz kalmaktadır. Günümüzde hastalıklar, toksik ajanlar ve ilaçların etkisiyle oluşan proteinlerin belirlenmesi ve işlevlerinin aydınlatılmasını amaçlayan birçok proteomik çalışma yapılmıştır. Proteomiklerin veteriner hekimlikte kullanımının beşeri hekimlikteki kullanımların gerisinde kalmasına rağmen son zamanlarda hayvan hastalıklarının patolojik yolaklarının araştırılmasında büyük bir ilgi alanı olmuştur. Son zamanlarda dünya çapında böbrek hastalıklarının nedenlerinin başında, glomerüler hastalıklar gelmektedir. Glomerüler hastalıkların teşhisinde kullanılabilecek idrar belirteçlerini belirlemek için insan ve hayvan modellerinde proteomik çalışmalar yapılmaktadır. Proteomik çalışmaların diğer çalışmalardan farkı, bir defada çok sayıda proteinin incelenmesine imkân sağlamasıdır. Yapılan proteomik araştırmalar sayesinde, interlökin-18, nötrofil jelatinaz ilişkili lipokalin, renal papiller antijen-1, böbrek hasar molekülü-1, simetrik dimetilarjinin, clusterin, cauxin, karaciğer tipi yağ asidi bağlayıcı protein, albümin, retinol bağlayıcı protein, sistatin C, N-asetil-β-d glukozaminidaz gibi çeşitli biyobelirteçler bulunmaktadır. Bu derlemede, hayvanlarda böbrek hastalıklarının erken teşhisinde biyobelirteç olarak proteomiklerin öneminden bahsedilmektedir.
Anahtar Kelimeler: Proteomikler; akut böbrek hasarı; kronik böbrek yetmezliği; böbrek
Kidney failure is an important disease that occurs in animals of all ages, especially in older animals, which is manifested by a decrease in organ function. Chronic kidney failure, in particular, is characterized by irreversible reduction in kidney function and is the most common kidney disease. Early diagnosis in kidney diseases is important in terms of effective treatment applications. Diagnosis of chronic kidney disease is an important part of small animal practice. Creatinine is insufficient for early diagnosis of the disease. Today, many proteomic studies have been conducted aiming to determine the proteins formed by the effects of diseases, toxic agents and drugs and to clarify their functions. Although the use of proteomics in veterinary medicine lags behind human medical uses, it has recently been a major area of interest in the research of pathological pathways of animal diseases. Recently, glomerular diseases are the main causes of kidney diseases worldwide. In order to determine the urine markers that can be used in the diagnosis of glomerular diseases, proteomic studies are conducted in human and animal models. The difference of proteomic studies from other studies is that it allows the examination of a large number of proteins at a time. Due to proteomic research, there are various biomarkers such as interleukin-18, neutrophil gelatinase associated lipocalin, renal papillary antigen-1, kidney damage molecule-1, symmetric dimethylarginine, clusterin, cauxin, liver type fatty acid binding protein, albumin, retinol binding protein, cystatin C, N-acetyl-β-D glucosaminidase. In this review, the importance of proteomics as a biomarker in early diagnosis of kidney diseases in animals is mentioned.
Keywords: Proteomics; acute kidney injury; chronic renal failure; kidney
- Horgan RP, Kenny LC. Omic technologies: genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist. 2011;13(3):189-95. [Crossref]
- Kurban S, Mehmetoğlu İ. [Proteomic]. Yeni Tıp Dergisi. 2010;27:70-5.
- Gündoğdu AK, Karahan AG. [Nutrigenomic technologies]. Gıda. 2008;33(4):183-91.
- Marko-Varga G. Proteomics principles and challenges. Pure Appl Chem. 2004;76(4): 829-37. [Crossref]
- Goodacre R. Metabolomics-the way forward. Metabolomics. 2005;1:1-2. [Crossref]
- Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, Beretta L, et al. The human proteome project: current state and future direction. Mol Cell Proteomics. 2011;10(7): M111.009993. [Crossref] [PubMed] [PMC]
- Özcengiz G. [Proteomic: The most powerful technology of the post-genomic period]. ODTÜ Haber Bülteni. 2007;15:9-13.
- Başaran E, Aras S, Cansaran-Duman D. [General outlook and applications of genomics, proteomics and metabolomics]. Türk Hijyen ve Deneysel Biyoloji Dergisi. 2010;67(2):85-96.
- Eckersall PD, Bell R. Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine. Vet J. 2010;185(1):23-7. [Crossref] [PubMed]
- Miller I. Protein seperation strategies. In: Eckersall D, Whitfield P, eds. Methods in Animal Proteomics. 1st ed. Chichester: John Wiley & Sons; 2011. p.41-76. [Crossref]
- Köse Sİ, Maden M. [Urinary biomarkers: review]. Turkiye Klinikleri J Vet Sci. 2015;6(1):7-18. [Crossref]
- Langston C. Acute uremia. In: Ettinger SJ, Feldman EC, eds. Textbook of Veterinary Internal Medicine: Diseases of the Dog and the Cat. 7th ed. St. Louis, MO: Saunders Elsevier; 2009. p.1969-84.
- Segev G, Kass PH, Francey T, Cowgill LD. A novel clinical scoring system for outcome prediction in dogs with acute kidney injury managed by hemodialysis. J Vet Intern Med. 2008;22(2):301-8. [Crossref] [PubMed]
- Price R. Early markers of nephrotoxicity. Comp Clin Pathol. 2002;(11):2-7. [Crossref]
- Lv Y, Cai G, Chen X. Applications of Urinary Proteomics in Renal Disease Research Using Animal Models. Adv Exp Med Biol. 2015;845:145-50. [Crossref] [PubMed]
- Barratt J, Topham P. Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007;177(4):361-8. [Crossref] [PubMed] [PMC]
- Price SA, Davies D, Rowlinson R, Copley CG, Roche A, Falkenberg FW, et al. Characterization of renal papillary antigen 1 (RPA-1), a biomarker of renal papillary necrosis. Toxicol Pathol. 2010;38(3):346-58. [Crossref] [PubMed]
- Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301-9. [Crossref] [PubMed] [PMC]
- Nickolas TL, Barasch J, Devarajan P. Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17(2): 127-32. [Crossref] [PubMed]
- Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425-32.
- Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45(1):17-23. [Crossref] [PubMed]
- Yuen PS, Jo SK, Holly MK, Hu X, Star RA. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol Genomics. 2006;25(3):375-86. [Crossref] [PubMed] [PMC]
- Segev G, Palm C, LeRoy B, Cowgill LD, Westropp JL. Evaluation of neutrophil gelatinase-associated lipocalin as a marker of kidney injury in dogs. J Vet Intern Med. 2013;27(6):1362-7. [Crossref] [PubMed]
- Nabity MB, Lees GE, Cianciolo R, Boggess MM, Steiner JM, Suchodolski JS. Urinary biomarkers of renal disease in dogs with X-linked hereditary nephropathy. J Vet Intern Med. 2012;26(2):282-93. [Crossref] [PubMed]
- Kai K, Yamaguchi T, Yoshimatsu Y, Kinoshita J, Teranishi M, Takasaki W. Neutrophil gelatinase-associated lipocalin, a sensitive urinary biomarker of acute kidney injury in dogs receiving gentamicin. J Toxicol Sci. 2013;38(2):269-77. [Crossref] [PubMed]
- Hsu WL, Lin YS, Hu YY, Wong ML, Lin FY, Lee YJ. Neutrophil gelatinase-associated lipocalin in dogs with naturally occurring renal diseases. J Vet Intern Med. 2014;28(2):437-42. [Crossref] [PubMed] [PMC]
- Lee YJ, Hu YY, Lin YS, Chang CT, Lin FY, Wong ML, et al. Urine neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute canine kidney injury. BMC Vet Res. 2013;8:248. [Crossref] [PubMed] [PMC]
- Yildiz R, Corum O, Atik O, Durna Corum D, Altan F, Ok M, et al. Changes in novel gastroıntestinal and renal injury markers in the blood plasma of sheep following increasing intravenous doses of tolfenamic acid. Acta Vet Hung. 2019;67(1):87-97. [Crossref] [PubMed]
- Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290(2):F517-29. [Crossref] [PubMed]
- Bland SK, Côté O, Clark ME, DeLay J, Bienzle D. Characterization of kidney injury molecule-1 in cats. J Vet Intern Med. 2014;28(5): 1454-64. [Crossref] [PubMed] [PMC]
- Nabity MB. Traditional renal biomarkers and new approaches to diagnostics. Toxicol Pathol. 2018;46(8):999-1001. [Crossref] [PubMed]
- Relford R, Robertson, J, Clements C. Symmetric dimethylarginine: improving the diagnosis and staging of chronic kidney disease in small animals. Vet Clin North Am Small Anim Pract. 2016;46(6):941-60. [Crossref] [PubMed]
- Randers E, Kristensen JH, Erlandsen EJ, Danielsen H. Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest. 1998;58(7):585-92. [Crossref] [PubMed]
- Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta analysis. Am J Kidney Dis. 2002;40(2):221-6. [Crossref] [PubMed]
- García-Martínez JD, Martinez-Subiela S, Tvarijonaviciute A, Caldin M, Ceron JJ. Urinary ferritin and cystatin C concentrations at different stages of kidney disease in leishmaniotic dogs. Res Vet Sci. 2015;99:204-7. [Crossref] [PubMed]
- Miyagawa Y, Takemura N, Hirose H. Evaluation of the measurement of serum cystatin C by an enzyme-linked immunosorbent assay for humans as a marker of the glomerular filtration rate in dogs. J Vet Med Sci. 2009;71(9):1169-76. [Crossref] [PubMed]
- Kovarikova S. Urinary biomarkers of renal function in dogs and cats: a review. Veterinarni Medicina. 2015;60(11):589-602. [Crossref]
- Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, et al. Impaired IL-18 processing protects caspase-1 deficient mice from ischemic acute renal failure. J Clin Invest. 2001;107(9):1145-52. [Crossref] [PubMed] [PMC]
- Zheng J, Xiao Y, Yao Y, Xu G, Li C, Zhang Q, et al. Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children. Pediatr Cardiol. 2013;34(4): 880-6. [Crossref] [PubMed]
- Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16(10):3046-52. [Crossref] [PubMed]
- Leslie JA, Meldrum KK. The role of interleukin-18 in renal injury. J Surg Res. 2008;145(1): 170-5. [Crossref] [PubMed]
- Forterre S, Raila J, Schweigert FJ. Protein profiling of urine from dogs with renal disease using ProteinChip analysis. J Vet Diagn Invest. 2014;16(4):271-7. [Crossref] [PubMed]
- Smets PM, Meyer E, Maddens B, Duchateau L, Daminet S. Urinary markers in healthy young and aged dogs and dogs with chronic kidney disease. J Vet Intern Med. 2010;24(1):65-72. [Crossref] [PubMed]
- van Hoek I, Daminet S, Notebaert S, Janssens I, Meyer E. Immunoassay of urinary retinol binding protein as a putative renal marker in cats. J Immunol Methods. 2008;329(1-2):208-13. [Crossref] [PubMed]
- Jones SE, Jomary C. Clusterin. Int J Biochem Cell Biol. 2002;34(5):427-31. [Crossref]
- Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol. 2010;28(5):463-9. [Crossref] [PubMed]
- Zhou X, Ma B, Lin Z, Qu Z, Huo Y, Wang J, et al. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs. Toxicol Appl Pharmacol. 2014;280(1):30-5. [Crossref] [PubMed]
- Miyazaki M, Kamiie K, Soeta S, Taira H, Yamashita T. Molecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus). Biochem J. 2003;370(Pt 1):101-10. [Crossref] [PubMed] [PMC]
- Miyazaki M, Soeta S, Yamagishi N, Taira H, Suzuki A, Yamashita T. Tubulointerstitial nephritis causes decreased renal expression and urinary excretion of cauxin, a major urinary protein of the domestic cat. Res Vet Sci. 2007;82(1):76-9. [Crossref] [PubMed]
- Furuhato N, Shiba K, Naro N. N acetyl βD- glucosaminidase. Nippon Rinsho. 1995;53(5):1267-76.
- Price RG. Measurement of N-acetyl beta-glucosaminidase and its isoeenzymes in urine methods and clinical applications. Eur J Clin Chem Clin Biochem. 1992;30(10):693-705.
- Bishop SA, Lucke VM, Stokes CR, Gruffydd-Jones TJ. Plasma and urine biochemical changes in cats with experimental immune complex glomerulonephritis. J Comp Pathol.1991;104(1):65-76. [Crossref]
- Newman SJ, Confer AW, Paneiera RJ. Urinary system. In: McGavin MD, Zachary JF, eds. Pathologic Basis of Veterinary Disease. 4th ed. St Louis: Elsevier Mosby; 2006. p.613-91.
- Murgier P, Jakins A, Bexfield N, Archer J. Comparison of semiquantitative test strips, urine protein electrophoresis, and immunoturbidimetric assay for measuring microalbuminuria in dogs. Vet Clin Pathol. 2009;38(4): 485-92. [Crossref] [PubMed]
- Erdoğan MB, Demirpençe Ö, Yıldırım M. [Early markers used in the diagnosis of acute renal failure after cardiovascular surgery]. ACU Sağlık Bil Derg. 2016(1):14-19.
.: Process List