Geleneksel kanser kemoterapisinde kullanılan ajanlar düşük terapötik indekse sahiptirler. Bu nedenle monoklonal bir antikor, bağlayıcı bir molekül ve sitotoksik bir ajandan oluşan immünokonjugatlar olan antikor-ilaç konjugatları (AİK) geliştirilmiştir. Tümör hücrelerinde bulunan çeşitli hedef moleküllere yönelik geliştirilmiş olan bu konjugatlar, son yıllarda kanser tedavisinde kullanılmaya başlanmıştır. Kemoterapide uygulanan geleneksel tedavi yöntemlerine kıyasla bu ajanlar, yüksek düzeyde seçiciliğe ve düşük yan etki profiline sahiptirler. Bu özellikleri, standart tedaviler içinde yer almalarını sağlamıştır. Yeni geliştirilen bu konjugatlar ile ilacın doğrudan kanser hücreleri üzerine hedeflenmesi amaçlanmaktadır. Buna bağlı olarak da sistemik toksisitenin azaltılması ve tedavi etkinliğinin artırılması hedeflenmektedir. Son yıllarda farklı sitotoksik ajanlar AİK'lerinde kullanılmışlardır. Sitotoksik ajanlar; tübülin hasarı yapanlar ve DNA hasarı yapanlar olmak üzere 2 ayrı mekanizmaya sahiptirler. Amanitin bazlı AİK'leri ise RNA polimeraz II üzerinde inhibitör etki göstermektedirler. Bu şekilde çok düşük konsantrasyonlarda bile DNA transkripsiyonunu inhibe etmektedirler. Bu konjugatlar, tümör mikro-ortamı ile dinamik etkileşime girerek, terapötik etkinlikte artış sağlarlar. Amanitin bazlı konjugatların geliştirilmesi oldukça yeni bir yaklaşımdır. Amanitin, çoklu ilaç direnci gösteren tümör hücreleri üzerinde düşük konsantrasyonlarda bile yüksek sitotoksik etki gösterir. AİK'lerinin tasarlanması, bireyselleştirilmiş kanser tedavilerinin geliştirilmesine önemli katkı sağlayacaktır. Son yıllarda amanitin toksini, AİK'lerinin yapısında yer alan ajanlardan biridir. Mikrogram düzeylerde bile pek çok tümörün mikro çevresinde sitotoksik etki gösterir. Bu derlemede amatoksin konjugatları ile ilgili güncel bilgilere yer verilmiştir.
Anahtar Kelimeler: Amatoksin; antikor-ilaç konjugatları; kemoterapi; monoklonal antikorlar
Agents used in conventional cancer chemotherapy have a low therapeutic index. Therefore, antibody-drug conjugates (ADCs), which are immunoconjugates composed of a monoclonal antibody, a binding molecule, and a cytotoxic agent, have been developed. These conjugates, which have been developed for various target molecules in tumor cells, have been used in cancer treatment in recent years. Compared to conventional treatment methods used in chemotherapy, these agents have high selectivity and a low side-effect profile. These features have enabled them to be included in standard treatments. With these newly developed conjugates, it is aimed to target the drug directly on cancer cells. Accordingly, it is aimed to reduce systemic toxicity and increase treatment efficiency. In recent years, different cytotoxic agents have been used in ADCs. Cytotoxic agents; have two separate mechanisms: those that cause tubulin damage and those that do DNA damage. Amanitin-based ADCs show an inhibitory effect on RNA polymerase II. In this way, they inhibit DNA transcription even at very low concentrations. These conjugates interact dynamically with the tumor microenvironment, resulting in increased therapeutic efficacy. The development of amanitin-based conjugates is a fairly new approach. Amanitin exerts a high cytotoxic effect on multidrug resistant tumor cells even at low concentrations. Designing ADCs will make a significant contribution to the development of individualized cancer treatments. In recent years, amanitin toxin is one of the agents involved in the structure of ADCs. Even at microgram levels, it has a cytotoxic effect in the microenvironment of many tumors. In this review, up-to-date information about amatoxin conjugates is given.
Keywords: Amatoxin; antibody-drug conjugates; chemotherapy; monoclonal antibodies
- Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225. [Crossref] [PubMed] [PMC]
- Nasiri H, Valedkarimi Z, Aghebati-Maleki L, Majidi J. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J Cell Physiol. 2018;233(9):6441-57. [Crossref] [PubMed]
- Lu J, Jiang F, Lu A, Zhang G. Linkers having a crucial role in antibody-drug conjugates. Int J Mol Sci. 2016;17(4):561. [Crossref] [PubMed] [PMC]
- Dosio F, Stella B, Cerioni S, Gastaldi D, Arpicco S. Advances in anticancer antibody-drug conjugates and immunotoxins. Recent Pat Anticancer Drug Discov. 2014;9(1):35-65. [Crossref] [PubMed]
- Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62. [Crossref] [PubMed] [PMC]
- Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):254-262. [Crossref] [PubMed]
- Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34-45. [Crossref] [PubMed] [PMC]
- Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov. 2003;2(1):52-62. Erratum in: Nat Rev Drug Discov. 2003;2(3):240. [Crossref] [PubMed]
- Mahmuda A, Bande F, Al-Zihiry KJK, Abdulhaleem N, Abd Majid R, Hamat RA, et al. Monoclonal antibodies: A review of therapeutic applications and future prospects. Trop J Pharm Res. 2017;16(3):713-22. [Crossref]
- Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495-7. [Crossref] [PubMed]
- Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2(3):256-65. [Crossref] [PubMed] [PMC]
- Milstein C. The hybridoma revolution: an offshoot of basic research. Bioessays. 1999;21(11):966-73. [Crossref] [PubMed]
- Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33-46. [Crossref] [PubMed] [PMC]
- Laguzza BC, Nichols CL, Briggs SL, Cullinan GJ, Johnson DA, Starling JJ, et al. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem. 1989;32(3):548-55. [Crossref] [PubMed]
- Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev. 2001;53(2):171-216. [Crossref] [PubMed]
- Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC linker chemistry. Pharm Res. 2015;32(11):3526-40. [Crossref] [PubMed] [PMC]
- Gondi CS, Rao JS. Cathepsin B as a cancer target. Expert Opin Ther Targets. 2013;17(3):281-91. [Crossref] [PubMed] [PMC]
- Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, et al. Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm Sin B. 2021;11(12):3889-3907. [Crossref] [PubMed] [PMC]
- Nolting B. Linker technologies for antibody-drug conjugates. Methods Mol Biol. 2013;1045:71-100. [Crossref] [PubMed]
- Mills BJ, Lang CA. Differential distribution of free and bound glutathione and cyst(e)ine in human blood. Biochem Pharmacol. 1996;52(3):401-6. [Crossref] [PubMed]
- Pahl A, Lutz C, Hechler T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov Today Technol. 2018;30:85-9. [Crossref] [PubMed]
- Sapra P, Hooper AT, O'Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs. 2011;20(8):1131-49. [Crossref] [PubMed]
- Bhattacharyya B, Wolff J. Maytansine binding to the vinblastine sites of tubulin. FEBS Lett. 1977;75(1):159-62. [Crossref] [PubMed]
- Pettit GR, Kamano Y, Fujii Y, Herald CL, Inoue M, Brown P, et al. Marine animal biosynthetic constituents for cancer chemotherapy. J Nat Prod. 1981;44(4):482-5. [Crossref] [PubMed]
- Boger DL, Johnson DS. CC‐1065 and the duocarmycins: understanding their biological function through mechanistic studies. Angew Chem Int Ed Engl. 1996;35(13‐14):1438-74. [Crossref]
- Zein N, Sinha AM, McGahren WJ, Ellestad GA. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science. 1988;240(4856):1198-201. [Crossref] [PubMed]
- Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3-19. [Crossref] [PubMed]
- Huang S, van Duijnhoven SMJ, Sijts AJAM, van Elsas A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J Cancer Res Clin Oncol. 2020;146(12):3111-22. Epub 2020 Sep 28. [Crossref] [PubMed] [PMC]
- Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175-96. [Crossref] [PubMed] [PMC]
- Bander NH, Czuczman MS, Younes A. Antibody-drug conjugate technology development for hematologic disorders. Clin Adv Hematol Oncol. 2012;10(8 Suppl 10):1-16. [PubMed]
- FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res. 2011;71(20):6300-9. [Crossref] [PubMed] [PMC]
- Dahlgren D, Lennernäs H. Antibody-drug conjugates and targeted treatment strategies for hepatocellular carcinoma: a drug-delivery perspective. Molecules. 2020;25(12):2861. [Crossref] [PubMed] [PMC]
- Walton JD, Hallen-Adams HE, Luo H. Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers. 2010;94(5):659-64. [Crossref] [PubMed] [PMC]
- Moldenhauer G, Salnikov AV, Lüttgau S, Herr I, Anderl J, Faulstich H. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst. 2012;104(8):622-34. [Crossref] [PubMed]
- Armstrong A, Eck SL. EpCAM: A new therapeutic target for an old cancer antigen. Cancer Biol Ther. 2003;2(4):320-6. [Crossref] [PubMed]
- Chaudry MA, Sales K, Ruf P, Lindhofer H, Winslet MC. EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br J Cancer. 2007;96(7):1013-9. [Crossref] [PubMed] [PMC]
- Siegert MJ, Knittel CH, Süssmuth RD. A convergent total synthesis of the death cap toxin α-amanitin. Angew Chem Int Ed Engl. 2020;59(14):5500-504. [Crossref] [PubMed] [PMC]
- Anderl J, Müller C, Heckl-Östreicher B, Wehr R. Abstract 3616: Highly potent antibody-amanitin conjugates cause tumor-selective apoptosis. Cancer Res. 2011;71(8_Supplement):3616. [Crossref]
- Manzano A, Oca-a A. Antibody-drug conjugates: a promising novel therapy for the treatment of ovarian cancer. Cancers (Basel). 2020;12(8):2223. [Crossref] [PubMed] [PMC]
- Li M, Liu ZS, Liu XL, Hui Q, Lu SY, Qu LL, et al. Clinical targeting recombinant immunotoxins for cancer therapy. Onco Targets Ther. 2017;10:3645-65. [Crossref] [PubMed] [PMC]
- Singh RK, Jones RJ, Shirazi F, Hong S, Wang H, Wan J, et al. HDP-101, a novel BCMA-targeted antibody conjugated to α-amanitin, is active against myeloma with preferential efficacy against pre-clinical models of deletion 17p. Clin Lymphoma Myeloma Leuk. 2019;19(10):e152. [Crossref]
- Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24(34):3834-3848. [Crossref] [PubMed] [PMC]
- Bever CS, Barnych B, Hnasko R, Cheng LW, Stanker LH. A new conjugation method used for the development of an immunoassay for the detection of amanitin, a deadly mushroom toxin. Toxins (Basel). 2018;10(7):265. [Crossref] [PubMed] [PMC]
- Gallo F, Korsak B, Müller C, Hechler T, Yanakieva D, Avrutina O, et al. Enhancing the pharmacokinetics and antitumor activity of an α-amanitin-based small-molecule drug conjugate via conjugation with an Fc Domain. J Med Chem. 2021;64(7):4117-29. [Crossref] [PubMed]
- Świderska KW, Szlachcic A, Opaliński Ł, Zakrzewska M, Otlewski J. FGF2 dual warhead conjugate with monomethyl auristatin E and α-amanitin displays a cytotoxic effect towards cancer cells overproducing FGF receptor 1. Int J Mol Sci. 2018;19(7):2098. [Crossref] [PubMed] [PMC]
- Liu Y, Zhang X, Han C, Wan G, Huang X, Ivan C, et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature. 2015;520(7549):697-701. Erratum in: Nature. 2021;597(7875):E6. [Crossref] [PubMed] [PMC]
- Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7(11):1187-99. [Crossref] [PubMed] [PMC]
- Ko J, Breunig C, Figueroa V, Lehners V, Baumann A, Pálfi A, et al. Preclinical evaluation of hdp-101 a novel anti-BCMA antibody-Drug conjugate, in multiple myeloma Blood. 2017;130(Supplement 1):3070. [Link]
- Horowitz BZ, Moss MJ. Amatoxin mushroom toxicity. [Updated 2021 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [Link]
.: Process List