Biyomateryaller arasında yer alan biyoseramiklerin yüzey reaktif grubunu oluşturan biyoaktif camlar, biyoaktivite özellikleri ve dokularla bağ oluşturabilme yetenekleri sayesinde başta kemik doku mühendisliği olmak üzere çeşitli uygulamalarda, özellikle doku rejenerasyonu amacıyla ilgi gören bir sistemdir ve piyasada farklı kullanım alanlarına sahip preparatları bulunmaktadır. Farmasötik alanda biyoaktif camlar; etken maddeleri, iyonları, peptid ve proteinleri, hormon ve büyüme faktörleri gibi biyoaktif molekülleri iletmek için taşıyıcı olarak kullanıldıklarında sinerjik etki sağlanabildiği tespit edilmiştir. Biyoaktif camlar, kendine özgü özellikleri sayesinde daha yüksek verimlilik ve daha düşük toksisite sergileyen ilaç taşıyıcı sistemlerin geliştirilebilmesine imkân tanır. Çeşitli modifikasyonlara uygun olan yapısı, kontrollü salım ve ilaç hedefleme amacıyla kullanımlarını mümkün kılar. Bu amaçla genellikle nano/mikro partiküler yapıda polimerlerle kompozit hâlinde veya mezoporöz ve fiber yapılara sahip biyoaktif camların kullanımı tercih edilir. Etken maddeler, biyoaktif camlara sol-jel prosesi ile camın sentezi sırasında veya immersiyon yoluyla dâhil edilebilir. Bu derlemede, biyoaktif camlara genel bir bakış açısı sunulması, uygulama ve kullanım alanları hakkında bilgi verilmesi ve bugüne kadar yapılan çalışmalarla destekleyerek, farmasötik alandaki uygulamaları ve ilaç taşıyıcı sistem olarak biyoaktif camların kullanımının değerlendirilmesi amaçlanmıştır.
Anahtar Kelimeler: Biyoaktif cam; biyoaktivite; biyouyumluluk; rejeneratif tıp; doku mühendisliği; katı-jel faz geçişleri; ilaç taşıyıcı sistemler; kontrollü ilaç salım sistemleri; ilaç hedefleme
Bioactive glasses that composes of surface reactive group of which is bioceramics among biomaterials, by the means of their attributes and abilities of tissue bonding they attract a great deal of interest among several applications particularly bone tissue engineering specifically for the purpose of tissue regeneration and they have preparations that have different fields of usage. In the pharmaceutical field it has been observed that when bioactive glasses are used as carriers to transmit bioactive molecules such as active ingredients, ions, peptides and proteins synergic effect can be yielded. Bioactive glasses with their own unique characteristics make possible to develop drug delivery systems which display more efficiency and less toxicity. With their structure which is applicable to various modifications they make possible their fields of usage for the purposes of controlled release and drug targeting. For this reason, it is preferred to usually use bioactive glasses as in forms of mesoporous and fiber structure or composited with polymers in nano/micro particle level. Active ingredients can be incorporated into bioactive glasses at solgel process during the synthesis of the glass or with the immersion. In this review, it is intended to offer an overall perspective about bioactive glasses, to inform about their fields of application and usage and to assess their usage in pharmaceutical field and as drug delivery systems with proving studies done so far.
Keywords: Bioactive glass; bioactivity; biocompatibility; regenerative medicine; tissue engineering; sol-gel phase transition; drug delivery systems; controlled drug delivery systems; drug targeting
- Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014;102(1):254-74. [Crossref] [PubMed]
- Ceyhan T, Günay V, Capoğlu A, Sayrak H, Karaca C. Bir cam-seramik biyomalzemenin üretimi, tanimlanmasi ve biyolojik etkilerinin canli-dişi ve canli-içi ortamda değerlendirilmesi [Production and characterization of a glass-ceramic biomaterial and in vitro and in vivo evaluation of its biological effects]. Acta Orthop Traumatol Turc. 2007;41(4):307-13. [PubMed]
- Brunner TJ, Stark WJ, Boccaccini AR. Nanoscale bioactive silicate glasses in biomedical applications. In: Kumar C, ed. Nanostructured Oxides (Nanomaterials for Life Sciences). 1st ed. Weinheim: Wiley-VCH; 2009. p.203-20. [Link]
- Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9(1):4457-86. [Crossref] [PubMed]
- Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive glasses entering the mainstream. Drug Discov Today. 2018;23(10):1700-4. [Crossref] [PubMed]
- Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17(11):967-78. [Crossref] [PubMed]
- Borges R, Kai KC, Marchi J. Biocompatible glasses for controlled release technology. In: Marchi J, ed. Biocompatible Glasses: From Bone Regeneration to Cancer Treatment. Advanced Structured Materials, 53. 1st ed. Cham: Springer International Publishing; 2016. p.285-315. [Crossref]
- Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757-74. [Crossref] [PubMed]
- Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 2001;55(2):151-7. [Crossref] [PubMed]
- Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010;16(2):199-207. [Crossref] [PubMed]
- Hu S, Chang J, Liu M, Ning C. Study on antibacterial effect of 45S5 Bioglass. J Mater Sci Mater Med. 2009;20(1):281-6. [Crossref] [PubMed]
- Day RM, Boccaccini AR. Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res A. 2005;73(1):73-9. [Crossref] [PubMed]
- Baino F, Hamzehlou S, Kargozar S. Bioactive Glasses: Where are we and where are we going? J Funct Biomater. 2018;9(1):25. [Crossref] [PubMed] [PMC]
- Jones JR, Brauer DS, Hupa L, Greenspan DC. Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glass Sci. 2016;7(4):423-34. [Crossref]
- Alsharabasy AM. A mini-review on the bioactive glass-based composites in soft tissue repair. Bioceram Dev Appl. 2018;8(1):1-4. [Link]
- Hench LL, Jones JR. Bioactive glasses: frontiers and challenges. Front Bioeng Biotechnol. 2015;3:194. [Crossref] [PubMed] [PMC]
- Merwin GE. Bioglass middle ear prosthesis: preliminary report. Ann Otol Rhinol Laryngol. 1986;95(1 Pt 1):78-82. [Crossref] [PubMed]
- Zamet JS, Darbar UR, Griffiths GS, Bulman JS, Brägger U, Bürgin W, et al. Particulate bioglass as a grafting material in the treatment of periodontal intrabony defects. J Clin Periodontol. 1997;24(6):410-8. [Crossref] [PubMed]
- Fiume E, Barberi J, Verné E, Baino F. Bioactive Glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J Funct Biomater. 2018;9(1):24. [Crossref] [PubMed] [PMC]
- Banerjee A, Hajatdoost-Sani M, Farrell S, Thompson I. A clinical evaluation and comparison of bioactive glass and sodium bicarbonate air-polishing powders. J Dent. 2010;38(6):475-9. [Crossref] [PubMed]
- Ma X, Schou KR, Maloney-Schou M, Harwin FM, Ng JD. The porous polyethylene/bioglass spherical orbital implant: a retrospective study of 170 cases. Ophthalmic Plast Reconstr Surg. 2011;27(1):21-7. [Crossref] [PubMed]
- Lin Y, Mauro JC, Kaur G. Bioactive glasses for cancer therapy. In: Kaur G, ed. Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses. Woodhead Publishing Series in Biomaterials. 1st ed. Cambridge: Woodhead Publishing; 2019. p.273-312. [Link]
- Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1-15. [Crossref] [PubMed]
- Gantar A, da Silva LP, Oliveira JM, Marques AP, Correlo VM, Novak S, et al. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;43:27-36. [Crossref] [PubMed]
- Rottensteiner U, Sarker B, Heusinger D, Dafinova D, Rath SN, Beier JP, et al. In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials (Basel). 2014;7(3):1957-74. [Crossref] [PubMed] [PMC]
- Oliveira MB, Luz GM, Mano JF. A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. J Mater Chem B. 2014;2(34):5627-38. [Crossref] [PubMed]
- Wilda H, Gough JE. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Biomaterials. 2006;27(30):5220-9. [Crossref] [PubMed]
- Rego SJ, Vale AC, Luz GM, Mano JF, Alves NM. Adhesive bioactive coatings inspired by Sea Life. Langmuir. 2016;32(2):560-8. [Crossref] [PubMed]
- Waltimo T, Mohn D, Paqué F, Brunner TJ, Stark WJ, Imfeld T, et al. Fine-tuning of bioactive glass for root canal disinfection. J Dent Res. 2009;88(3):235-8. [Crossref] [PubMed]
- Mohn D, Zehnder M, Imfeld T, Stark WJ. Radio-opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity. Int Endod J. 2010;43(3):210-7. [Crossref] [PubMed]
- Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, et al. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007;3(6):936-43. [Crossref] [PubMed]
- Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym. 2012;87(1):274-83. [Crossref]
- Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, et al. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25(27):5857-66. [Crossref] [PubMed]
- Joo NY, Knowles JC, Lee GS, Kim JW, Kim HW, Son YJ, et al. Effects of phosphate glass fiber-collagen scaffolds on functional recovery of completely transected rat spinal cords. Acta Biomater. 2012;8(5):1802-12. [Crossref] [PubMed]
- Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials. 2004;25(15):3013-21. [Crossref] [PubMed]
- Barabadi Z, Azami M, Sharifi E, Karimi R, Lotfibakhshaiesh N, Roozafzoon R, et al. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;69:1137-46. [Crossref] [PubMed]
- Santos L, Ferraz MP, Shirosaki Y, Lopes MA, Fernandes MH, Osaka A, et al. Degradation studies and biological behavior on an artificial cornea material. Invest Ophthalmol Vis Sci. 2011;52(7):4274-81. [Crossref] [PubMed]
- Rai R, Boccaccini AR, Knowles JC, Locke IC, Gordge MP, McCormick A, et al. Fabrication of a novel poly (3-hydroxyoctanoate)/nanoscale bioactive glass composite film with potential as a multifunctional wound dressing. In: D'Amore A, Acierno D, Grassia L, eds. V International Conference on Times of Polymers (TOP) and Composites. AIP Conference Proceedings/Materials Physics and Applications, No 1255. 2010th ed. New York: American Institute of Physics; 2010. p.126-8. [Link]
- Hong KS, Kim EC, Bang SH, Chung CH, Lee YI, Hyun JK, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res A. 2010;94(4):1187-94. [Crossref] [PubMed]
- Vallet-Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry. 2006;12(23):5934-43. [Crossref] [PubMed]
- Hum J, Boccaccini AR. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci Mater Med. 2012;23(10):2317-33. [Crossref] [PubMed]
- Erol-Taygun M, Zheng K, Boccaccini AR. Nanoscale bioactive glasses in medical applications. Int J Appl Glass Sci. 2013;4(2):136-48. [Crossref]
- Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass applications in dentistry. Int J Mol Sci. 2019;20(23):5960. [Crossref] [PubMed] [PMC]
- Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol. 2010;70(13):1764-76. [Crossref]
- Zambanini T, Borges R, Marchi J. Bioactive glass/polymer composites for drug delivery. In: Kaur G, eds. Clinical Applications of Biomaterials: State-of-the-Art Progress, Trends, and Novel Approaches. 1st ed. Cham: Springer International Publishing; 2017. p.287-311. [Link]
- Zheng K, Boccaccini AR. Sol-gel processing of bioactive glass nanoparticles: A review. Adv Colloid Interface Sci. 2017;249:363-73. [Crossref] [PubMed]
- Arcos D, Vallet-Regí M. Bioceramics for drug delivery. Acta Mater. 2013;61(3):890-911. [Crossref]
- Izquierdo-Barba I, Vallet-Regí M. Mesoporous bioactive glasses: Relevance of their porous structure compared to that of classical bioglasses. Biomed Glasses. 2015;1:140-50. [Crossref]
- Kaur G, Kumar V, Baino F, Mauro JC, Pickrell G, Evans I, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng C Mater Biol Appl. 2019;104:109895. [Crossref] [PubMed]
- Ding Y, Souza MT, Li W, Schubert DW, Boccaccini AR, Roether JA. Bioactive glass-biopolymer composites. In: Antoniac IV, ed. Handbook of Bioceramics and Biocomposites. 1st ed. Cham: Springer International Publishing; 2015. p.1-26. [Crossref]
- Poologasundarampillai G, Obata A. Electrospun bioactive glass and organic-inorganic hybrid fibers for tissue regeneration and drug delivery. In: Dong Y, Baji A, Ramakrishna S, eds. Electrospun Polymers and Composites: Ultrafine Materials, High Performance Fibers and Wearables. Woodhead Publishing Series in Composites Science and Engineering. 1st ed. Cambridge: Woodhead Publishing; 2021. p.77-110. [Link]
- Penide J, Quintero F, del Val J, Comesa-a R, Lusqui-os F, Riveiro A, et al. Bioactive glass nanofibers for tissue engineering. In: Grumezescu V, Grumezescu AM, eds. Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures. 1st ed. Amsterdam: Elsevier; 2019. p. 329-56. [Link]
- Domingues ZR, Cortés ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, et al. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with beta-cyclodextrin. Biomaterials. 2004;25(2):327-33. [Crossref] [PubMed]
- Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Golda-Cepa M, Brzychczy-Wloch M, et al. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioact Mater. 2021;6(6):1811-26. [Crossref]
- Abdel-Salam FS, Elkheshen SA, Mahmoud AA, Basalious EB, Amer MS, Mostafa AA, et al. In-situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. Int J Pharm. 2020;580:119213. [Crossref] [PubMed]
- El-Kady AM, Farag MM. Bioactive glass nanoparticles as a new delivery system for sustained 5-fluorouracil release: characterization and evaluation of drug release mechanism. J Nanomater. 2015:1-11. [Crossref]
- El-Sayed SAM, Mabrouk M, Khallaf ME, Abd El-Hady BM, El-Meliegy E, Shehata MR. Antibacterial, drug delivery, and osteoinduction abilities of bioglass/chitosan scaffolds for dental applications. J Drug Deliv Sci Technol. 2020;57:101757. [Crossref]
- Rivadeneira J, Luz GM, Audisio MC, Mano JF, Gorustovich AA. Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride. Biomed Glasses. 2015;1:128-35. [Crossref]
- Yang C, Wu H, Li G. Bioactive ophiopogonin release form bioglass-collagen-phosphatidylserine scaffolds to enhance bone repair in vitro. Mater Lett. 2020;265:127436. [Crossref]
- Mouri-o V, Newby P, Pishbin F, Cattalini JP, Lucangioli S, Boccaccini AR. Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. Soft Matter. 2011;7(14):6705-12. [Crossref]
- Wu C, Zhang Y, Ke X, Xie Y, Zhu H, Crawford R, et al. Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J Biomed Mater Res A. 2010;95(2):476-85. [Crossref] [PubMed]
- Wu J, Miao G, Zheng Z, Li Z, Ren W, Wu C, et al. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair. J Biomater Appl. 2019;33(6):755-65. [Crossref] [PubMed]
- Fu S, Du X, Zhu M, Tian Z, Wei D, Zhu Y. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomed Mater. 2019;14(6):065011. [Crossref] [PubMed]
- Lin HM, Lin HY, Chan MH. Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. J Mater Chem B. 2013;1(44):6147-56. [Crossref] [PubMed]
- Hu M, Fang J, Zhang Y, Wang X, Zhong W, Zhou Z. Design and evaluation a kind of functional biomaterial for bone tissue engineering: Selenium/mesoporous bioactive glass nanospheres. J Colloid Interface Sci. 2020;579:654-66. [Crossref] [PubMed]
- Nawaz Q, Fuentes-Chandía M, Tharmalingam V, Rehman MAU, Leal-Ega-a A, Boccaccini AR. Silibinin releasing mesoporous bioactive glass nanoparticles with potential for breast cancer therapy. Ceram Int. 2020;46(18):29111-9. [Crossref]
- Shoaib M, Ur Rahman MS, Saeed A, Naseer MM. Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery. Colloids Surf B Biointerfaces. 2018;172:806-11. [Crossref] [PubMed]
- El-Fiqi A, Kim JH, Kim HW. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl Mater Interfaces. 2015;7(2):1140-52. [Crossref] [PubMed]
- Huang CL, Fang W, Huang BR, Wang YH, Dong GC, Lee TM. Bioactive glass as a nanoporous drug delivery system for teicoplanin. Appl Sci (Basel). 2020;10(7):2595. [Crossref]
- Xia W, Chang J, Lin J, Zhu J. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites. Eur J Pharm Biopharm. 2008;69(2):546-52. [Crossref] [PubMed]
- Xu H, Ge YW, Lu JW, Ke QF, Liu ZQ, Zhu ZA, et al. Icariin loaded-hollow bioglass/chitosan therapeutic scaffolds promote osteogenic differentiation and bone regeneration. Chem Eng J. 2018;354:285-94. [Crossref]
.: Process List