Amaç: Bu in vitro çalışmada, farklı tarayıcı sistemler kullanılarak alınan ölçülerden, bilgisayar destekli tasarım ve bilgisayar destekli üretim [computer-aided design/computer-aided manufacturing (CAD/CAM)] yöntemi kullanılarak elde edilen zirkonya ile güçlendirilmiş lityum silikat kuronların marjinal ve internal aralık değerlerinin karşılaştırılması amaçlanmıştır. Gereç ve Yöntemler: Fantom çene üzerinde maksiller sağ 1. premolar dişin preparasyonu yapıldı. Restorasyonun üretilebilmesi için gerekli ölçüler, 3 farklı direkt dijital tarayıcı (Primescan, Trios 4, iTero Element 2) ve 1 adet indirekt dijital tarayıcı (Ceramill MAP400) ile elde edildi (4 grup, n=12). Restorasyonlar, zirkonya ile güçlendirilmiş lityum silikat bloklardan 5 akslı freze ünitesi ile üretildi. Marjinal aralık ve internal aralık değerleri, silikon replika yöntemi ile x10 büyütmeli ışık mikroskobu altında ölçüldü. Üç ve üzeri gruplara göre normal dağılmayan uyum değerlerinin karşılaştırılmasında Kruskal-Wallis; 2'li gruplara göre normal dağılmayan verilerin karşılaştırılmasında Mann-Whitney U testi kullanıldı. (p<0,05). Bulgular: Direkt yöntem, indirekt yönteme göre istatistiksel olarak daha düşük marjinal ve internal aralık değeri gösterdi (p<0,05). Ağız içi tarayıcılar arasında, marjinal ve internal aralık değeri bakımından istatistiksel olarak anlamlı düzeyde farklılık olduğu saptandı (p<0,05). En düşük uç aralık değeri Trios 4 (73,4±27,8 μm) ağız içi tarayıcısında kaydedildi. En düşük internal aralık değeri iTero Element 2 (81,6±36,8 μm) ağız içi tarayıcısında elde edildi. Sonuç: İntraoral dijital tarayıcılar kullanılarak, CAD-CAM yöntemiyle üretilen kuron restorasyonlardan klinik olarak kabul edilebilir marjinal ve internal aralık değeri elde edilmiştir (<90 μm). Ağız içi ve ağız dışı dijital tarayıcılardan elde edilen kuron restorasyonların, marjinal ve internal aralık değeri istatistiksel olarak anlamlı düzeyde farklılık göstermiştir (p<0,05).
Anahtar Kelimeler: CAD-CAM; internal aralık; marjinal aralık; zirkonya ile güçlendirilmiş lityum silikat
Objective: In this in vitro study, it was aimed to compare the marginal and internal gap values of zirconia reinforced lithium silicate crowns fabricated using the computer-aided design/computeraided manufacturing method from the measurements taken using different scanning systems. Material and Methods: The maxillary right 1st premolar tooth was prepared on the phantom jaw. The necessary impression for the restoration were obtained with 3 different direct digital scanners (Primescan, Trios 4, iTero Element 2) and 1 indirect digital scanner (Ceramill MAP400) (4 groups, n=12). The restorations were fabricated from lithium silicate blocks reinforced with zirconia with a 5-axis milling unit. Marginal gap and internal gap values were measured using the silicon replica method under a light microscope with x10 magnification. In the comparison of non-normally distributed fit values for groups of 3 or more, Kruskal-Wallis; Mann-Whitney U test was used to compare data that were not normally distributed according to paired groups (p<0.05). Results: The direct method showed statistically lower marginal and internal gap values than the indirect method (p<0.05). A statistically significant difference was found between the intraoral scanners in terms of marginal and internal gap values (p<0.05). The lowest marginal gap value was recorded in the Trios 4 (73.4±27.8 μm) intraoral scanner. The lowest internal gap value was obtained with the iTero Element 2 (81.6±36.8 μm) intraoral scanner. Conclusion: Clinically acceptable marginal and internal gap values were fabricated from crown restorations produced by CAD-CAM method using intraoral digital scanner (<90 μm). The marginal and internal gap values of the crown restorations obtained from intraoral and extraoral digital scanners differed statistically significantly (p<0.05).
Keywords: CAD-CAM; internal gap; marginal gap; lithium silicate reinforced with zirconia
- Bader JD, Rozier RG, McFall Jr WT, Ramsey DL. Effect of crown margins on periodontal conditions in regularly attending patients. J Prosthet Dent. 1991;65(1):75-9. [Crossref] [PubMed]
- Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry IL, Thomas GW, et al. Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent. 2015;113(4):304-9. [Crossref] [PubMed]
- Christensen GJ. Computerized restorative dentistry. State of the art. J Am Dent Assoc. 2001;132(9):1301-3. [Crossref] [PubMed]
- Mehl A, Hickel R. Current state of development and perspectives of machine-based production methods for dental restorations. Int J Comput Dent. 1999;2(1):9-35. [PubMed]
- Samet N, Resheff B, Gelbard S, Stern N. A CAD/CAM system for the production of metal copings for porcelain-fused-to-metal restorations. J Prosthet Dent. 1995;73(5):457-63. [Crossref] [PubMed]
- Güth JF, Wallbach J, Stimmelmayr M, Gernet W, Beuer F, Edelhoff D. Computer-aided evaluation of preparations for CAD/CAM-fabricated all-ceramic crowns. Clin Oral Investig. 2013;17(5):1389-95. [Crossref] [PubMed]
- Logozzo S, Franceschini G, Kilpelä A, Caponi M, Governi L, Blois L. A comparative analysis of intraoral 3d digital scanners for restorative dentistry. Internet J Med Technol. 2011;5:1-12. [Crossref]
- Rodriguez JM, Bartlett DW. The dimensional stability of impression materials and its effect on in vitro tooth wear studies. Dent Mater. 2011;27(3):253-8. [Crossref] [PubMed]
- Kale E, Seker E, Yilmaz B, Özcelik TB. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. J Prosthet Dent. 2016;116(6):890-5. [Crossref] [PubMed]
- Abbate MF, Tjan AH, Fox WM. Comparison of the marginal fit of various ceramic crown systems. J Prosthet Dent. 1989;61(5):527-31. [Crossref] [PubMed]
- Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989;62(4):405-8. [Crossref] [PubMed]
- American Dental Association. Guide to Dental Materials and Devices, ANSI/ADA Specification No. 8 for zinc phosphate cement. 5th ed. Chicago: American Dental Association; 1970-1971.
- Abduo J, Lyons K, Swain M. Fit of zirconia fixed partial denture: a systematic review. J Oral Rehabil. 2010;37(11):866-76. [Crossref] [PubMed]
- Akbar JH, Petrie CS, Walker MP, Williams K, Eick JD. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J Prosthodont. 2006;15(3):155-63. [Crossref] [PubMed]
- Akın A, Toksavul S, Toman M. Clinical marginal and internal adaptation of maxillary anterior single all-ceramic crowns and 2-year randomized controlled clinical trial. J Prosthodont. 2015;24(5):345-50. [Crossref] [PubMed]
- Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent. 2014;112(3):555-60. [Crossref] [PubMed]
- Seelbach P, Brueckel C, Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig. 2013;17(7):1759-64. [Crossref] [PubMed]
- Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014;41(11):853-74. [Crossref] [PubMed]
- Memari Y, Mohajerfar M, Armin A, Kamalian F, Rezayani V, Beyabanaki E. Marginal adaptation of CAD/CAM all-ceramic crowns made by different impression methods: a literature review. J Prosthodont. 2019;28(2):e536-44. [Crossref] [PubMed]
- Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent. 2013;110(6):447-54. e10. [Crossref] [PubMed]
- Raskin A, Tassery H, D'Hoore W, Gonthier S, Vreven J, Degrange M, et al. Influence of the number of sections on reliability of in vitro microleakage evaluations. Am J Dent. 2003;16(3):207-10. [PubMed]
- Mously HA, Finkelman M, Zandparsa R, Hirayama H. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique. J Prosthet Dent. 2014;112(2):249-56. [Crossref] [PubMed]
- Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns--validation of the silicone replica method. J Oral Rehabil. 2008;35(2):116-22. [Crossref] [PubMed]
- Rahme HY, Tehini GE, Adib SM, Ardo AS, Rifai KT. In vitro evaluation of the "replica technique" in the measurement of the fit of Procera crowns. J Contemp Dent Pract. 2008;9(2):25-32. [PubMed]
- Groten M, Axmann D, Pröbster L, Weber H. Determination of the minimum number of marginal gap measurements required for practical in vitro testing. J Prosthet Dent. 2000;83(1):40-9. [Crossref] [PubMed]
- Park JY, Bae SY, Lee JJ, Kim JH, Kim HY, Kim WC. Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis. J Adv Prosthodont. 2017;9(3):159-69. [Crossref] [PubMed] [PMC]
- Majeed MA, Al-Adel SK. Evaluation of the marginal and internal fitness of full contour CAD/CAM crowns made from zirconia, lithium disilicate, zirconia-reinforced lithium silicate and hybrid dental ceramic by silicone replica technique (A comparative In vitro study). Journal of Genetic and Environmental Resources Conservation. 2016;4:10-20. [Link]
- Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont. 2013;22(5):419-28. [Crossref] [PubMed]
- Pedroche LO, Bernardes SR, Leão MP, de Almeida Kintopp CC, Correr GM, Ornaghi BP, et al. Marginal and internal fit of zirconia copings obtained using different digital scanning methods. Braz Oral Res. 2016;30(1):e113. [Crossref] [PubMed]
- Akhlaghian M, Khaledi AA, Farzin M, Pardis S. Vertical marginal fit of zirconia copings fabricated with one direct and three indirect digital scanning techniques. J Prosthet Dent. 2021;126(3):421-6. [Crossref] [PubMed]
- Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed ST. Dimensional accuracy of 7 die materials. J Prosthodont. 2005;14(1):25-31. [Crossref] [PubMed]
- Robles-Medina M, Romeo-Rubio M, Salido MP, Pradíes G. Digital intraoral impression methods: an update on accuracy. Current Oral Health Reports. 2020;1-15. [Crossref]
- Erozan Ç, Ozan O. Evaluation of the precision of different intraoral scanner-computer aided design (CAD) software combinations in digital dentistry. Med Sci Monit. 2020;26:e918529. [Crossref] [PubMed] [PMC]
- Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci. 2015;23(5):515-22. [Crossref] [PubMed] [PMC]
- Cho H, Jun Y, Yang MY. Five-axis CNC milling for effective machining of sculptured surfaces. The International Journal of Production Research. 1993;31:2559-73. [Crossref]
- Bosch G, Ender A, Mehl A. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent. 2014;112(6):1425-31. [Crossref] [PubMed]
- Zimmermann M, Valcanaia A, Neiva G, Mehl A, Fasbinder D. Digital evaluation of the fit of zirconia-reinforced lithium silicate crowns with a new three-dimensional approach. Quintessence Int. 2018;49(1):9-15. [PubMed]
.: Process List