Endokrin bozucu kimyasal (EDC)'lar, hormonların sentez, taşınma, metabolizma ve atılımları üzerine etkileri olan ve dolayısıyla potansiyel olarak olumsuz sağlık etkileri gösteren maddelerdir. Bu maddelere prenatal maruziyetin daha ciddi sorunlar oluşturabileceği bilinmektedir; fakat yaşamın tüm evrelerinde de istenmeyen etkiler oluşturmaları mümkündür. EDC'lere tek tek maruziyetin olumsuz etkileri birçok çalışmada incelenmiştir. Ancak, özellikle kombine maruziyetlerin etkilerini değerlendiren çalışmalar sınırlıdır. Son yıllarda, tüm dünya genelinde azalan fertilitenin ve artan endokrin bozuklukların farklı EDC'lere maruziyet ile ilişkilendirildiği pek çok çalışma yapılmaktadır. EDC'lerin başta testis olmak üzere, erkek üreme sistemini ve prostat dâhil tüm aksesuar bezleri etkileyebileceği belirtilmiştir. Özellikle ftalatların 'Testiküler Disgenezis sendromu'na neden olduğu, erkek fertilitisini olumsuz yönde etkilediği bilinmektedir. Epidemiyolojik verilere göre, erkek üreme organlarında neoplazi insidansı son 50 yılda artmıştır. Bu durum, normal hormonal dengeyi engelleyen çevresel kimyasalların, özellikle EDC'lere maruziyetin artmasıyla ilişkili olabilir. EDC'lere, özellikle de ftalatlara maruziyetin erken yaşlarda görülen testis kanserleriyle de ilişkili olabileceği ifade edilmektedir. Spesifik endokrin bozucu kimyasalların, hem in vivo hem de in vitro modellerde erkek üreme sistemi ve endokrinle ilişkili kanserlerin gelişimi üzerindeki etkilerine yönelik birçok araştırma yapılmıştır. Bu derlemede, EDC'ler ile ilgili genel bilgiler verildikten sonra, bu kimyasalların erkek üreme sağlığı üzerindeki olası etkileri değerlendirilecek ve özellikle prostat bezi üzerindeki etkileri ile ilgili hem ampirik hem de epidemiyolojik çalışmalardan elde edilen veriler ile birlikte sunulacaktır.
Anahtar Kelimeler: Endokrin bozucu kimyasal; prostat; erkek üreme sistemi
Endocrine disrupting chemicals (EDCs) are substances that affect the synthesis, transfer, metabolism and excretion of hormones and therefore, they potentially have unwanted health effects. It is well-known that prenatal exposure to these subtances may lead to serious deleterious effects; but exposure in all stages of life may also cause negatory effects. Indivudual exposures to EDCs are being investigated in several studies. However, there is limited number of studies that evaluate combined effects. In recent years, there are many studies that associate EDC exposure to decreasing fertility and increasing endocrine conditions throughout the world. It was stated that EDCs affect male reproductive system particularly testis and also all accessory glands, including prostate. Phthalates are particularly associated with testicular dysgenesis syndrome and negatively affect male fertility. Epidemiological data show that incidence of neoplasia in male reproductive organs has increased over the last 50 years. This instance may be related to the increased exposure of environmental chemicals, particularly EDCs, which interfere with normal hormonal balance. It is expressed that exposure to EDCs, specially to phthalates may be linked to early-life testicular cancers. Several studies have been conducted to investigate effects of specific EDCs on the development of male reproductive organs and endocrine related cancers in both in vivo and in vitro models. In this review, we will give general information on EDCs and then focus on their potential impact on male reproductive health, and in particular on their effects on the prostate gland by presenting data from empirical and epidemiological studies.
Keywords: Endocrine disrupting chemicals; prostate; male reproductive system
- Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378-84. [Crossref] [PubMed] [PMC]
- Environmental Protection Agency (EPA). Endocrine Disruption Screening Program (EDSP). EDSP Overview; 2012. https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program-edsp-overview
- Rüegg J, Penttinen-Damdimopoulou P, Mäkelä S, Pongratz I, Gustafsson JA. Receptors mediating toxicity and their involvement in endocrine disruption. EXS. 2009;99:289-323. [Crossref] [PubMed]
- Wuttke W, Jarry H, Seidlova-Wuttke D. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones (Athens). 2010;9(1):9-15. [Crossref] [PubMed]
- Safe S. Endocrine disruptors and falling sperm counts: lessons learned or not! Asian J Androl. 2013;15(2):191-4. [Crossref] [PubMed] [PMC]
- Prins GS, Ho SM. Early-life estrogens and prostate cancer in an animal model. J Dev Orig Health Dis. 2010;1(6):365-70. [Crossref] [PubMed] [PMC]
- Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009;30(7):883-925. [Crossref] [PubMed]
- Toppari J, Juul A. Trends in puberty timing in humans and environmental modifiers. Mol Cell Endocrinol. 2010;324(1-2):39-44. [Crossref] [PubMed]
- Campion S, Catlin N, Heger N, McDonnell EV, Pacheco SE, Saffarini C, et al. Male reprotoxicity and endocrine disruption. EXS Suppl. 2012;101:315-60. [Crossref] [PubMed] [PMC]
- Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development. 2017;144(8):1382-98. [Crossref] [PubMed] [PMC]
- Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, et al. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987;8(3):338-62. [Crossref] [PubMed]
- Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, Verleun-Mooijman MC, Trapman J, Brinkmann AO, et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol. 1994;144(4):735-46.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29. [Crossref] [PubMed]
- Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett. 2015;367(1):12-7. [Crossref] [PubMed]
- Cowin PA, Foster P, Pedersen J, Hedwards S, McPherson SJ, Risbridger GP. Early-onset endocrine disruptor-induced prostatitis in the rat. Environ Health Perspect. 2008;116(7):923-9. [Crossref] [PubMed] [PMC]
- Wang X, Wang J, Liu Y, Zong H, Che X, Zheng W, et al. Alterations in mechanical properties are associated with prostate cancer progression. Med Oncol. 2014;31(3):876. [Crossref] [PubMed]
- Li D, Zhou Z, Qing D, He Y, Wu T, Miao M, et al. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum Reprod. 2010;25(2):519-27. [Crossref] [PubMed]
- Vinggaard AM, Niemelä J, Wedebye EB, Jensen GE. Screening of 397 chemicals and development of a quantitative structure--activity relationship model for androgen receptor antagonism. Chem Res Toxicol. 2008;21(4):813-23. [Crossref] [PubMed]
- Sakkiah S, Ng HW, Tong W, Hong H. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Expert Opin Ther Targets. 2016;20(10):1267-82. [Crossref] [PubMed]
- Marselos M, Tomatis L. Diethylstilboestrol: I, pharmacology, toxicology and carcinogenicity in humans. Eur J Cancer. 1992;28A(6-7):1182-9. [Crossref]
- National Toxicology Program (NTP). Diethylstilbestrol CAS No. 56-53-1. 14th ed. Report on Carcinogens; 2016.
- Perdew GH. Xenobiotic receptor-mediated toxicity. In: McQueen CA, ed. Comprehensive Toxicology. 2nd ed. New York: Elsevier Science; 2010. p.202-23. [Crossref]
- Liehr JG, Ballatore AM, McLachlan JA, Sirbasku DA. Mechanism of diethylstilbestrol carcinogenicity as studied with the fluorinated analogue E-3',3",5',5"-tetrafluorodiethylstilbestrol. Cancer Res. 1983;43(6):2678-82.
- Qu YQ, Fang ZZ, Yang L, Gao ZM, Liang R, Zhu LL, et al. Reversible inhibition of four important human liver cytochrome P450 enzymes by diethylstilbestrol. Pharmazie. 2011;66(3):216-21.
- Yonemura CY, Cunha GR, Sugimura Y, Mee SL. Temporal and spatial factors in diethylstilbestrol-induced squamous metaplasia in the developing human prostate. II. Persistent changes after removal of diethylstilbestrol. Acta Anat (Basel). 1995;153(1):1-11. [Crossref] [PubMed]
- Virtanen HE, Adamsson A. Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355(2):208-20. [Crossref] [PubMed]
- Prins GS, Woodham C, Lepinske M, Birch L. Effects of neonatal estrogen exposure on prostatic secretory genes and their correlation with androgen receptor expression in the separate prostate lobes of the adult rat. Endocrinology. 1993;132(6):2387-98. [Crossref] [PubMed]
- Nelson KG, Sakai Y, Eitzman B, Steed T, McLachlan J. Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes. Cell Growth Differ. 1994;5(6):595-606.
- McLachlan JA. Prenatal exposure to diethylstilbestrol in mice: toxicological studies. J Toxicol Environ Health. 1977;2(3):527-37. [Crossref] [PubMed]
- Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116(1):39-44. [Crossref] [PubMed] [PMC]
- Molina-Molina JM, Amaya E, Grimaldi M, Sáenz JM, Real M, Fernández MF, et al. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol. 2013;272(1):127-36. [Crossref] [PubMed]
- Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132-55. [Crossref] [PubMed]
- Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One. 2014;9(3):e90332. [Crossref] [PubMed] [PMC]
- Hanaoka T, Kawamura N, Hara K, Tsugane S. Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med. 2002;59(9):625-8. [Crossref] [PubMed] [PMC]
- Meeker JD, Calafat AM, Hauser R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol. 2010;44(4):1458-63. [Crossref] [PubMed] [PMC]
- Brandt JZ, Silveira LT, Grassi TF, Anselmo-Franci JA, Fávaro WJ, Felisbino SL, et al. Indole-3-carbinol attenuates the deleterious gestational effects of bisphenol A exposure on the prostate gland of male F1 rats. Reprod Toxicol. 2014;43:56-66. [Crossref] [PubMed]
- Prins GS, Ye SH, Birch L, Zhang X, Cheong A, Lin H, et al. Prostate cancer risk and dna methylation signatures in aging rats following developmental BPA exposure: a dose-response analysis. Environ Health Perspect. 2017;125(7):077007. [Crossref] [PubMed] [PMC]
- Zhu X, Gao L, Yan C, He Y. A novel role and mechanism of cystic fibrosis transmembrane conductance regulator in bisphenol A‐induced prostate cancer. J Cell Biochem. 2019;120(5):8689-95. [Crossref] [PubMed]
- Xu LC, Sun H, Chen JF, Bian Q, Qian J, Song L, et al. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology. 2005;216(2-3):197-203. [Crossref] [PubMed]
- Roy P, Salminen H, Koskimies P, Simola J, Smeds A, Saukko P, et al. Screening of some anti-androgenic endocrine disruptors using a recombinant cell-based in vitro bioassay. J Steroid Biochem Mol Biol. 2004;88(2):157-66. [Crossref] [PubMed]
- Ademollo N, Ferrara F, Delise M, Fabietti F, Funari E. Nonylphenol and octylphenol in human breast milk. Environ Int. 2008;34(7):984-7. [Crossref] [PubMed]
- Inaguma S, Takahashi S, Imaida K, Suzuki S, Shirai T. p-Nonylphenol pretreatment during the late neonatal period has no effect on 3,2'-dimethyl-4-aminobiphenyl-induced prostate carcinogenesis in male F344 rats. Cancer Lett. 2004;212(2):159-66. [Crossref] [PubMed]
- Bonefeld-Jørgensen EC, Long M, Hofmeister MV, Vinggaard AM. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect. 2007;115 Suppl 1:69-76. [Crossref] [PubMed] [PMC]
- Murugesan P, Kanagaraj P, Yuvaraj S, Balasubramanian K, Aruldhas MM, Arunakaran J. The inhibitory effects of polychlorinated biphenyl Aroclor 1254 on Leydig cell LH receptors, steroidogenic enzymes and antioxidant enzymes in adult rats. Reprod Toxicol. 2005;20(1):117-26. [Crossref] [PubMed]
- Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1-E150. [Crossref] [PubMed] [PMC]
- Kester MH, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany CN, et al. Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology. 2000;141(5):1897-900. [Crossref] [PubMed]
- Ruder AM, Hein MJ, Hopf NB, Waters MA. Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: A ten-year update. Int J Hyg Environ Health. 2014;217(2-3):176-87. [Crossref] [PubMed] [PMC]
- Aronson KJ, Wilson JW, Hamel M, Diarsvitri W, Fan W, Woolcott C, et al. Plasma organochlorine levels and prostate cancer risk. J Expo Sci Environ Epidemiol. 2010;20(5):434-45. [Crossref] [PubMed]
- Endo F, Monsees TK, Akaza H, Schill WB, Pflieger-Bruss S. Effects of single non-ortho, mono-ortho, and di-ortho chlorinated biphenyls on cell functions and proliferation of the human prostatic carcinoma cell line, LNCaP. Reprod Toxicol. 2003;17(2):229-36. [Crossref]
- Selvakumar K, Sheerin Banu L, Krishnamoorthy G, Venkataraman P, Elumalai P, Arunakaran J. Differential expression of androgen and estrogen receptors in PCB (Aroclor 1254)-exposed rat ventral prostate: Impact of alpha-tocopherol. Exp Toxicol Pathol. 2011;63(1-2):105-12. [Crossref] [PubMed]
- International Agency on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 98. Painting, Firefighting, & Shiftwork; 2010.
- Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica EG, Hebert EJ, et al. Role of cadmium in the regulation of AR gene expression and activity. Endocrinology. 2002;143(1):263-75. [Crossref] [PubMed]
- Doolan G, Benke G, Giles G. An update on occupation and prostate cancer. Asian Pac J Cancer Prev. 2014;15(2):501-16. [Crossref] [PubMed]
- García-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, et al. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect. 2014;122(4):363-70. [Crossref] [PubMed] [PMC]
- Tokar EJ, Qu W, Waalkes MP. Arsenic, stem cells, and the developmental basis of adult cancer. Toxicol Sci. 2011;120 Suppl 1:S192-203. [Crossref] [PubMed] [PMC]
- Latini G, Del Vecchio A, Massaro M, Verrotti A, DE Felice C. In utero exposure to phthalates and fetal development. Curr Med Chem. 2006;13(21):2527-34. [Crossref] [PubMed]
- Muczynski V, Lecureuil C, Messiaen S, Guerquin MJ, N'tumba-Byn T, Moison D, et al. Cellular and molecular effect of MEHP involving LXRα in human fetal testis and ovary. PLoS One. 2012;7(10):e48266. [Crossref] [PubMed] [PMC]
- Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056-61.
- Pant N, Shukla M, Kumar Patel D, Shukla Y, Mathur N, Kumar Gupta Y, et al. Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol. 2008;231(1):112-6. [Crossref] [PubMed]
- Foster PM. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29(1):140-7. [Crossref] [PubMed]
- Gray LE Jr, Wilson VS, Stoker T, Lambright C, Furr J, Noriega N, et al. Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Int J Androl. 2006;29(1):96-104. [Crossref] [PubMed]
- Erkekoglu P, Giray BK, Kızilgün M, Rachidi W, Hininger-Favier I, Roussel AM, et al. Di(2-ethylhexyl)phthalate-induced renal oxidative stress in rats and protective effect of selenium. Toxicol Mech Methods. 2012;22(6):415-23. [Crossref] [PubMed]
- Erkekoglu P, Zeybek ND, Giray B, Asan E, Arnaud J, Hincal F. Reproductive toxicity of di(2-ethylhexyl) phthalate in selenium-supplemented and selenium-deficient rats. Drug Chem Toxicol. 2011;34(4):379-89. [Crossref] [PubMed]
- Erkekoglu P, Rachidi W, Yuzugullu OG, Giray B, Favier A, Ozturk M, et al. Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium. Toxicol Appl Pharmacol. 2010;248(1):52-62. [Crossref] [PubMed]
- Erkekoğlu P, Rachidi W, De Rosa V, Giray B, Favier A, Hincal F. Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells. Free Radic Biol Med. 2010;49(4):559-66. [Crossref] [PubMed]
- Erkekoğlu P, Rachidi W, Yüzügüllü OG, Giray B, Oztürk M, Favier A, et al. Induction of ROS, p53, p21 in DEHP- and MEHP-exposed LNCaP cells-protection by selenium compounds. Food Chem Toxicol. 2011;49(7):1565-71. [Crossref] [PubMed]
- Xu X, Dailey AB, Talbott EO, Ilacqua VA, Kearney G, Asal NR. Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. adults. Environ Health Perspect. 2010;118(1):60-6. [Crossref] [PubMed] [PMC]
- Turusov V, Rakitsky V, Tomatis L. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect. 2002;110(2):125-8. [Crossref] [PubMed] [PMC]
- Hansen ME, Matsumura F. Effects of heptachlor epoxide on components of various signal transduction pathways important in tumor promotion in mouse hepatoma cells. Determination of the most sensitive tumor promoter related effect induced by heptachlor epoxide. Toxicology. 2001;160(1-3):139-53. [Crossref]
- Ritchie JM, Vial SL, Fuortes LJ, Guo H, Reedy VE, Smith EM. Organochlorines and risk of prostate cancer. J Occup Environ Med. 2003;45(7):692-702. [Crossref] [PubMed]
- Koutros S, Langseth H, Grimsrud TK, Barr DB, Vermeulen R, Portengen L, et al. Prediagnostic serum organochlorine concentrations and metastatic prostate cancer: a nested case-control study in the norwegian janus serum bank cohort. Environ Health Perspect. 2015;123(9):867-72. [Crossref] [PubMed] [PMC]
- Dich J, Wiklund K. Prostate cancer in pesticide applicators in Swedish agriculture. Prostate. 1998;34(2):100-12. [Crossref]
- Settimi L, Masina A, Andrion A, Axelson O. Prostate cancer and exposure to pesticides in agricultural settings. Int J Cancer. 2003;104(4):458-61. [Crossref] [PubMed]
- Mozzachio AM, Rusiecki JA, Hoppin JA, Mahajan R, Patel R, Beane-Freeman L, et al. Chlorothalonil exposure and cancer incidence among pesticide applicator participants in the agricultural health study. Environ Res. 2008;108(3):400-3. [Crossref] [PubMed] [PMC]
- Venkataraman P, Sridhar M, Dhanammal S, Vijayababu MR, Srinivasan N, Arunakaran J. Antioxidant role of zinc in PCB (Aroclor 1254) exposed ventral prostate of albino rats. J Nutr Biochem. 2004;15(10):608-13. [Crossref] [PubMed]
.: Process List