Endokrin bozucu maddeler, hormonların üretimini, taşınmalarını, metabolizmalarını, atılımlarını ve hedef hücrelerdeki reseptörle etkileşmesini değiştirebilen maddelerdir. Doğal endokrin bozucular birçok gıdada bulunabilir ve genelde etkileri kısıtlıdır. Ancak, sentetik olan endokrin bozuculara tüm canlıların yaygın olarak maruziyeti söz konusudur. Endokrin bozucu kimyasalların çevre ve farklı canlılar üzerine etkileri son yıllarda küresel çapta ilgi gören ve araştırmaların odağı hâline gelmiş bir konu olarak karşımıza çıkmaktadır. Bu maddelerin gittikçe yaygınlaşan kullanımı ve doğada önüne geçilemez şekilde var olması, ekosistem üzerinde geri dönüşümsüz etkilere neden olarak, canlı organizmalar için büyük bir tehdit hâline gelmektedir. Endokrin bozucu kimyasallara canlıların maruziyeti infertilite, tamamlanamayan/gecikmiş cinsel olgunluk, tiroit veya adrenokortikal fonksiyonda bozulma, belirli kanserler için risk artışı, doğum kusurları, immünosupresyon ve otoimmünite ile sonuçlanmaktadır. Bu etkiler canlılarda olumsuz sonuçlara yol açmakla kalmayıp, sonraki kuşaklarını da ciddi şekilde etkilemektedir ve bu özellikleriyle türlerin yok olmasının gizli nedenlerinden biri olarak görülmektedir. Yaygın ve bilinçsiz kullanımı sonucu su, toprak ve hava büyük ölçüde kontamine olarak bu alanlarda yaşayan tüm canlılar için büyük bir risk oluşturmaktadır. Türlerin yok olmasında ve hormonal sistemlerinin bozulmasında bu kimyasalların etkisi olduğu bilinmekle birlikte, bu konuda çok daha fazla çalışmaya ihtiyaç duyulmaktadır. Konu ile ilgili araştırmaların artırılması, canlıların yaşamı ve neslinin devamlılığı için önlem alınması gerekmektedir. Bu derlemede, endokrin bozucu kimyasal maddeler ve ekosistem üzerindeki olumsuz etkilerine değinilmiştir.
Anahtar Kelimeler: Endokrin bozucu kimyasallar; ekotoksikoloji; ekosistem
Endocrine disruptors are substances that can alter the production, transport, metabolism, excretion and receptor interaction of hormones in target cells. Natural endocrine disruptors can be found in many foods and are generally of limited effectiveness. However, there is widespread exposure of all living things to synthetic endocrine disruptors. The effects of endocrine-disrupting chemicals on the environment and various species have received global attention and have become the focus of research in recent years. The increasingly widespread use of these substances and their unavoidable presence in nature cause an irreversible impact on the ecosystem, making them a major threat to living organisms. Exposure to endocrine disrupting chemicals results in infertility, incomplete/delayed sexual maturity, impaired thyroid or adreno-cortical function, increased risk for certain cancers, birth defects, immunosuppression and autoimmunity. These effects not only cause negative consequences for the species, but also seriously affect the next generations, and with these features, they are suggested to as one of the hidden reasons for the extinction of the species. As a result of widespread and unconscious use, water, soil and air are highly contaminated, creating a great risk for all living things in these areas. Although it is known that these chemicals affect the extinction of species and cause the deterioration of their hormonal systems, further research is needed. It is necessary to increase the research on the subject and take precautions for the continuity of the life and generation of living things. In this traditional review, endocrine-disrupting chemicals and their negative effects on the ecosystem are discussed.
Keywords: Endocrine disrupting chemicals; ecotoxicology; ecosystem
- Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology. 2012;153(9):4097-110. [Crossref] [PubMed] [PMC]
- Yıldız Fendoğlu B, Koçer-Gümüşel B, Erkekoğlu P. Endokrin bozucu kimyasal maddelere ve etki mekanizmalarına genel bir bakış [A general overview on endocrine disrupting chemicals and their mechanism of action]. Hacettepe University Journal of the Faculty of Pharmacy. 2017;39(1):30-43. [Link]
- World Health Organization [Internet]. © 2023 WHO [Cited: November 25, 2022]. Available from: [Link]
- Durmaz E, Giray BK. Çevresel bir endokrin bozucu: bisfenol A ve toksik etkilerinin değerlendirilmesi [An environmental endocrine disruptor: evaluation of bisphenol A and its toxic effect]. Cocuk Sag Hast Derg. 2013;56(4):192-9. [Link]
- Matthiessen P. Endocrine disruption in marine fish. Pure Appl Chem. 2003;75(11-12):2249-61. [Crossref]
- Liu R, Zhou JL, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry. J Chromatogr A. 2004;1022(1-2):179-89. [Crossref] [PubMed]
- Cassidy A, Albertazzi P, Lise Nielsen I, Hall W, Williamson G, Tetens I, et al. Critical review of health effects of soyabean phyto-oestrogens in post-menopausal women. Proc Nutr Soc. 2006;65(1):76-92. [Crossref] [PubMed]
- Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378-84. [Crossref] [PubMed] [PMC]
- Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, et al. International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull. 2009;58(10):1437-46. [Crossref] [PubMed]
- Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342. [Crossref] [PubMed] [PMC]
- Golub M, Doherty J. Triphenyltin as a potential human endocrine disruptor. J Toxicol Environ Health B Crit Rev. 2004;7(4):281-95. [Crossref] [PubMed]
- Jasrotia R, Langer S, Dhar M. Endocrine disrupting chemicals in aquatic ecosystem: an emerging threat to wildlife and human health. Proceedings of the Zoological Society. 2021;74(Suppl-1, M11):1-14. [Crossref]
- Stork NE. Re-assessing current extinction rates. Biodiversity and Conservation. 2010;19(2):357-71. [Crossref]
- Godfrey A, Hooser B, Abdelmoneim A, Horzmann KA, Freemanc JL, Sepúlveda MS. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish. Aquat Toxicol. 2017;193:228-35. Erratum in: Aquat Toxicol. 2021;241:106001. [Crossref] [PubMed]
- Darbre PD. Overview of air pollution and endocrine disorders. Int J Gen Med. 2018;11:191-207. [Crossref] [PubMed] [PMC]
- EPA [Internet]. [Cited: November 30, 2022]. The Environmental Protection Agency. Available from: [Link]
- Bixio D, Thoeye C, De Koning J, Joksimovic D, Savic D, Wintgens T, et al. Wastewater reuse in Europe. Desalination. 2006;187(1-3):89-101. [Crossref]
- Awata H, Cobb GP, Anderson TA. A chemical test for determining biological availability of aged chemicals in soil. Int J Environ Anal Chem. 2000;78(1):41-9. [Crossref]
- Shin KH, Jung H, Chang P, Choi H, Kim KW. Earthworm toxicity during chemical oxidation of diesel-contaminated sand. Environ Toxicol Chem. 2005;24(8):1924-9. [Crossref] [PubMed]
- Janer G, Sternberg RM, LeBlanc GA, Porte C. Testosterone conjugating activities in invertebrates: are they targets for endocrine disruptors? Aquat Toxicol. 2005;71(3):273-82. [Crossref] [PubMed]
- Depledge MH, Billinghurst Z. Ecological significance of endocrine disruption in marine invertebrates. Mar Pollut Bull. 1999;39(1-12):32-8. [Crossref]
- Rodríguez EM, Medesani DA, Fingerman M. Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(4):661-71. [Crossref] [PubMed]
- Vos JG, Dybing E, Greim HA, Ladefoged O, Lambré C, Tarazona JV, et al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol. 2000;30(1):71-133. [Crossref] [PubMed]
- Kovarova J, Blahova J, Divisova L, Svobodova Z. Alkylphenol ethoxylates and alkylphenols--update information on occurrence, fate and toxicity in aquatic environment. Pol J Vet Sci. 2013;16(4):763-72. [Crossref] [PubMed]
- Kraak GVD, Hewitt M, Lister A, McMaster ME, Munkittrick KR. Endocrine toxicants and reproductive success in fish. Hum Ecol Risk Assess. Int J. 2001;7(5):1017-25. [Crossref]
- Bernanke J, Köhler HR. The impact of environmental chemicals on wildlife vertebrates. Rev Environ Contam Toxicol. 2009;198:1-47. [Crossref] [PubMed]
- Tyler C, Routledge E. Oestogenic effects in fish in English rivers with evidence of their causation. Pure and Appl Chem. 1998;70(9):1795-804. [Crossref]
- Gutleb AC, Appelman J, Bronkhorst MC, van den Berg JH, Spenkelink A, Brouwer A, et al. Delayed effects of pre- and early-life time exposure to polychlorinated biphenyls on tadpoles of two amphibian species (Xenopus laevis and Rana temporaria). Environ Toxicol Pharmacol. 1999;8(1):1-14. [Crossref] [PubMed]
- Orton F, Tyler CR. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rev Camb Philos Soc. 2015;90(4):1100-17. [Crossref] [PubMed]
- Willingham E, Rhen T, Sakata JT, Crews D. Embryonic treatment with xenobiotics disrupts steroid hormone profiles in hatchling red-eared slider turtles (Trachemys scripta elegans). Environ Health Perspect. 2000;108(4):329-32. [Crossref] [PubMed] [PMC]
- Weir SM, Talent LG, Anderson TA, Salice CJ. Unraveling the relative importance of oral and dermal contaminant exposure in reptiles: insights from studies using the western fence lizard (Sceloporus occidentalis). PLoS One. 2014;9(6):e99666. [Crossref] [PubMed] [PMC]
- Willingham E. Embryonic exposure to low-dose pesticides: effects on growth rate in the hatchling red-eared slider turtle. J Toxicol Environ Health A. 2001;64(3):257-72. [Crossref] [PubMed]
- Fry DM. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect. 1995;103 Suppl 7(Suppl 7):165-71. [Crossref] [PubMed] [PMC]
- Worldwatch: Bird Watching Organization [Internet]. [Cited: November 20, 2022]. Available from: [Link]
- Elliott JE, Norstrom RJ, Keith JA. Organochlorines and eggshell thinning in northern gannets (Sula bassanus) from Eastern Canada, 1968-1984. Environ Pollut. 1988;52(2):81-102. [Crossref] [PubMed]
- Weseloh DC, Ewins PJ. Characteristics of a rapidly increasing colony of double-crested cormorants (Phalacrocorax auritus) in Lake Ontario: population size, reproductive parameters and band recoveries. J Great Lakes Res. 1994;20(2):443-56. [Crossref]
- Guillette LJ Jr, Gunderson MP. Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants. Reproduction. 2001;122(6):857-64. [Crossref] [PubMed]
- Vonier PM, Crain DA, McLachlan JA, Guillette LJ Jr, Arnold SF. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect. 1996;104(12):1318-22. [Crossref] [PubMed] [PMC]
- de Swart R, Ross P, Vedder L, Timmerman H, Heisterkamp S, Van Loveren H, et al. Impairment of immune function in harbor seals (Phoca vitulina) feeding on fish from polluted waters. Ambio. 1994;23(2):155-9. [Link]
- Oskam IC, Ropstad E, Dahl E, Lie E, Derocher AE, Wiig O, et al. Organochlorines affect the major androgenic hormone, testosterone, in male polar bears (Ursus maritimus) at Svalbard. J Toxicol Environ Health A. 2003;66(22):2119-39. [Crossref] [PubMed]
- Zhang J, Klepac P, Read JM, Rosello A, Wang X, Lai S, et al. Patterns of human social contact and contact with animals in Shanghai, China. Sci Rep. 2019;9(1):15141. [Crossref] [PubMed] [PMC]
- Martin-Robichaud DJ, Peterson RH, Benfey TJ, Crim LW. Direct feminization of lumpfish (Cyclopterus lumpus L.) using 17β-oestradiol-enriched Artemia as food. Aquaculture. 1994;123(1-2):137-51. [Crossref]
- O'Donnell L, Robertson KM, Jones ME, Simpson ER. Estrogen and spermatogenesis. Endocr Rev. 2001;22(3):289-318. [Crossref] [PubMed]
- McAllister BG, Kime DE. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol. 2003;65(3):309-16. Erratum in: Aquat Toxicol. 2004;67(3):301-2. [Crossref] [PubMed]
- Baumann L, Knörr S, Keiter S, Nagel T, Segner H, Braunbeck T. Prochloraz causes irreversible masculinization of zebrafish (Danio rerio). Environ Sci Pollut Res Int. 2015;22(21):16417-22. [Crossref] [PubMed]
- Liang YQ, Xu W, Liang X, Jing Z, Pan CG, Tian F. The synthetic progestin norethindrone causes thyroid endocrine disruption in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2020;236:108819. [Crossref] [PubMed]
- Shimasaki Y, Kitano T, Oshima Y, Inoue S, Imada N, Honjo T. Tributyltin causes masculinization in fish. Environ Toxicol Chem. 2003;22(1):141-4. [Crossref] [PubMed]
- Bernhardt RR, von Hippel FA. Chronic perchlorate exposure impairs stickleback reproductive behaviour and swimming performance. Behaviour. 2008;145(4-5):537-59. [Crossref] [PubMed] [PMC]
- de Lafontaine Y, Gilbert NL, Dumouchel F, Brochu C, Moore S, Pelletier E, et al. Is chemical contamination responsible for the decline of the copper redhorse (Moxostoma hubbsi), an endangered fish species, in Canada? Sci Total Environ. 2002;298(1-3):25-44. [Crossref] [PubMed]
- Couture P, Rajotte JW. Morphometric and metabolic indicators of metal stress in wild yellow perch (Perca flavescens) from Sudbury, Ontario: a review. J Environ Monit. 2003;5(2):216-21. [Crossref] [PubMed]
- Alquezar R, Markich SJ, Booth DJ. Effects of metals on condition and reproductive output of the smooth toadfish in Sydney estuaries, south-eastern Australia. Environ Pollut. 2006;142(1):116-22. [Crossref] [PubMed]
- Bridges CM. Long-term effects of pesticide exposure at various life stages of the southern leopard frog (Rana sphenocephala). Arch Environ Contam Toxicol. 2000;39(1):91-6. [Crossref] [PubMed]
- Relyea RA, Mills N. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). Proc Natl Acad Sci U S A. 2001;98(5):2491-6. [Crossref] [PubMed] [PMC]
- Boone MD, Semlitsch RD. Interactions of an insecticide with larval density and predation in experimental amphibian communities. Conserv Biol. 2001;15(1):228-38. [Crossref]
- Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci U S A. 2010;107(10):4612-7. [Crossref] [PubMed] [PMC]
- Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci U S A. 2002;99(8):5476-80. [Crossref] [PubMed] [PMC]
- Rohr JR, Palmer BD. Aquatic herbicide exposure increases salamander desiccation risk eight months later in a terrestrial environment. Environ Toxicol Chem. 2005;24(5):1253-8. [Crossref] [PubMed]
- Reeder AL, Ruiz MO, Pessier A, Brown LE, Levengood JM, Phillips CA, et al. Intersexuality and the cricket frog decline: historic and geographic trends. Environ Health Perspect. 2005;113(3):261-5. [Crossref] [PubMed] [PMC]
- Mikkelsen M, Jenssen BM. Polychlorinated biphenyls, sex steroid hormones and liver retinoids in adult male European common frogs Rana temporaria. Chemosphere. 2006;63(5):707-15. [Crossref] [PubMed]
- Fort DJ, Thomas JH, Rogers RL, Noll A, Spaulding CD, Guiney PD, et al. Evaluation of the developmental and reproductive toxicity of methoxychlor using an anuran (Xenopus tropicalis) chronic exposure model. Toxicol Sci. 2004;81(2):443-53. [Crossref] [PubMed]
- Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau AL, et al. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci U S A. 2018;115(19):E4416-E4425. [Crossref] [PubMed] [PMC]
- Willingham EJ. The effects of atrazine and temperature on turtle hatchling size and sex ratios. Front Ecol Environ. 2005;3(6):309-13 [Crossref]
- Crews D, Bergeron JM, McLachlan JA. The role of estrogen in turtle sex determination and the effect of PCBs. Environ Health Perspect. 1995;103 Suppl 7(Suppl 7):73-7. [Crossref] [PubMed] [PMC]
- Talent LG, Dumont JN, Bantle JA, Janz DM, Talent SG. Evaluation of western fence lizards (Sceloporus occidentalis) and eastern fence lizards (Sceloporus undulatus) as laboratory reptile models for toxicological investigations. Environ Toxicol Chem. 2002;21(5):899-905. [Crossref] [PubMed]
- Henny CJ, Beal KF, Bury RB, Goggans R. Organochlorine pesticides, PCBs, trace elements and metals in western pond turtle eggs from Oregon. North Sci. 2003;77(1):46-53. [Link]
- Matsushita S, Yamashita J, Iwasawa T, Tomita T, Ikeda M. Effects of in ovo exposure to imazalil and atrazine on sexual differentiation in chick gonads. Poult Sci. 2006;85(9):1641-7. [Crossref] [PubMed]
- Bergman A, Bergstrand A, Bignert A. Renal lesions in Baltic grey seals (Halichoerus grypus) and ringed seals (Phoca hispida botnica). Ambio. 2001;30(7):397-409. [Crossref] [PubMed]
- Brunström B, Lund BO, Bergman A, Asplund L, Athanassiadis I, Athanasiadou M, et al. Reproductive toxicity in mink (Mustela vison) chronically exposed to environmentally relevant polychlorinated biphenyl concentrations. Environ Toxicol Chem. 2001;20(10):2318-27. [Crossref] [PubMed]
- Wren CD. Cause-effect linkages between chemicals and populations of mink (Mustela vison) and otter (Lutra canadensis) in the Great Lakes basin. J Toxicol Environ Health. 1991;33(4):549-85. [Crossref] [PubMed]
- Giesy JP, Ludwig JP, Tillitt DE. Dioxins, dibenzofurans, PCBs and colonial, fish-eating water birds. In: Schecter A, ed. Dioxins and Health. 1st ed. Boston, MA: Springer; 1994. p.249-307. [Crossref]
- Arima A, Kato H, Ise R, Ooshima Y, Inoue A, Muneoka A, et al. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces disruption of glands of the prostate and fibrosis in rhesus monkeys. Reprod Toxicol. 2010;29(3):317-22. [Crossref] [PubMed]
- Stark JD, Chen XD, Johnson CS. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark. Environ Pollut. 2012;164:24-7. [Crossref] [PubMed]
- Wisniewski AB, Klein SL, Lakshmanan Y, Gearhart JP. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J Urol. 2003;169(4):1582-6. [Crossref] [PubMed]
- Adamkovicova M, Toman R, Martiniakova M, Omelka R, Babosova R, Krajcovicova V, et al. Sperm motility and morphology changes in rats exposed to cadmium and diazinon. Reprod Biol Endocrinol. 2016;14(1):42. [Crossref] [PubMed] [PMC]
- Saalfeld GQ, Varela Junior AS, Castro T, Pereira FA, Gheller SMM, da Silva AC, et al. Low atrazine dosages reduce sperm quality of Calomys laucha mice. Environ Sci Pollut Res Int. 2018;25(3):2924-31. [Crossref] [PubMed]
.: Process List