Direnç antrenmanları; maksimum kuvveti, kuvvet geliştirme hızını, güç çıktılarını ve bunların etkisinde atletik performans potansiyelini geliştirmek için önemli uyarıcılar olarak kabul edilmektedir. Teknolojik gelişmeler diğer alanlarda olduğu gibi direnç antrenmanı yöntemlerinin de ilerlemesini ve gelişmesini desteklemektedir. Hız temelli antrenman, direnç antrenmanlarında akut antrenman değişkenlerinin sporcunun hazır bulunuşluk düzeyine göre ve maksimal kuvvet testlerine ihtiyaç duyulmadan düzenlendiği bir otoregülasyon metodu formudur. Bu yöntemde antrenman yükünün, hacminin, sıklığının ve diğer faktörlerin belirlenmesi için egzersizlerinin tekrar döngüsündeki konsantrik fazında hız takibi kullanılmaktadır. Ayrıca submaksimal yükler kullanılarak 1 tekrar maksimum kuvvet düzeyini tahmin etmeye olanak sağlayabilmesi, hareket hızının takibiyle birlikte sporcuya performansı, motivasyonu ve yorgunluk düzeyi hakkında eş zamanlı geri bildirim sağlaması hız temelli antrenman yaklaşımını öne çıkaran diğer özelliklerdir. Hız temelli antrenman, hareket hızını ölçen ve ticari olarak ulaşılması kolay olan farklı cihazların yaygınlaşması nedeniyle geçmişten günümüze popülerlik kazanmaktadır. Hız temelli antrenmana karşı egzersiz profesyonelleri ve sporcular tarafından giderek artan ilgi ve yönelim, bu yöntemdeki terimlerin, kullanılan ekipmanların, metotların ve uygulama aşamalarının doğru anlaşılması gerekliliğini ortaya çıkarmaktadır. Dolayısıyla bu derlemenin amacı, araştırmacılar ve uygulayıcılar tarafından kullanımı gün geçtikçe artan ve direnç antrenmanlarında güncel bir yaklaşım olan hız temelli antrenman yöntemini bütünsel bir bakış açısıyla tanımlamak, kullanımındaki terimleri ve ekipmanları açıklamak ve uygulama basamakları hakkında bilgi vermektir.
Anahtar Kelimeler: Hız temelli antrenman; direnç antrenmanları; kuvvet
Resistance training is recognized as an important training stimulant to improve maximum strength, rate of force development, power output, and, under the influence of these, athletic performance potential. Technological developments support the progress and development of training methods as in other fields. Velocity-based training is a form of autoregulation method in which acute training variables of resistance training are set according to the athlete's readiness level and without the need for maximal strength tests. In this method, velocity is used in the concentric phase of the exercise repetition cycle to determine the training load, volume, frequency, and other variables. In addition, the ability to predict the 1 repetition maximum strength level by using submaximal loads, providing simultaneous feedback on the performance, motivation and fatigue level of the athlete together with the tracking of the movement speed are other features that highlight the velocity-based training approach. Velocity-based training is gaining popularity from past to present due to the proliferation of different commercially available devices that measure movement velocity. Increasing interest and orientation to velocity-based training by exercise professionals and athletes reveals the need for a correct understanding of the terms, the equipment used, methods, and application stages in this method. Therefore, this review aims to describe the velocity-based training a current method in resistance training, and increasingly used by researchers and practitioners, from a holistic perspective, to explain the terms and equipment in its use and give information about the application steps.
Keywords: Velocity-based training; resistance training; strength
- Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation: acute mechanical responses. Sports Med. 2005; 35(11):967-89. [Crossref] [PubMed]
- González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(5):347-52. [Crossref] [PubMed]
- Mann JB, Ivey PA, Sayers SP. Velocity-based training in football. Strength & Conditioning Journal. 2015;37(6):52-7. [Crossref]
- Jovanović M, Flanagan EP. Researched applications of velocity based strength training. J Aust Strength Cond. 2014;22(2):58-69. Erişim linki: [Link]
- Nevin J. Autoregulated resistance training: does velocity-based training represent the future? Strength & Conditioning Journal. 2019;41:34-9. [Crossref]
- Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586(1):11-23. [Crossref] [PubMed] [PMC]
- Mann JB, Bryant KR, Johnstone B, Ivey PA, Sayers SP. Effect of Physical and Academic Stress on Illness and Injury in Division 1 College Football Players. J Strength Cond Res. 2016;30(1):20-5. [Crossref] [PubMed]
- Schoffstall JE, Branch JD, Leutholtz BC, Swain DE. Effects of dehydration and rehydration on the one-repetition maximum bench press of weight-trained males. J Strength Cond Res. 2001;15(1):102-8. [Crossref] [PubMed]
- Zhang X, Li H, Bi S, Luo Y, Cao Y, Zhang G. Auto-regulation method vs. fixed-loading method in maximum strength training for athletes: A systematic review and meta-analysis. Front Physiol. 2021;12:651112. [Crossref] [PubMed] [PMC]
- Mann JB, Thyfault JP, Ivey PA, Sayers SP. The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. J Strength Cond Res. 2010;24(7):1718-23. [Crossref] [PubMed]
- Shattock K, Tee JC. Autoregulation in resistance training: A comparison of subjective versus objective methods. J Strength Cond Res. 2020. [Crossref] [PubMed]
- ProQuest [İnternet]. © 2021 ProQuest LLC [Erişim tarihi: 15.05.2021]. A programming comparison: The APRE vs. linear periodization in short term periods. Erişim linki: [Link]
- Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016;38(4):42-9. [Crossref] [PubMed] [PMC]
- Guerriero A, Varalda C, Piacentini MF. The role of velocity based training in the strength periodization for modern athletes. J Funct Morphol Kinesiol. 2018;3(4):55. [Crossref] [PubMed] [PMC]
- Mc Burnie AJ, Allen KP, Garry M, Martin M, Jones PA, Comfort P, et al. The benefits and limitations of predicting one repetition maximum using the load-velocity relationship. Strength & Conditioning Journal. 2019;41(6): 28-40. [Crossref]
- Randell AD, Cronin JB, Keogh JW, Gill ND, Pedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25(1):87-93. [Crossref] [PubMed]
- Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):1725-34. [Crossref] [PubMed]
- Clemente FM, Akyildiz Z, Pino-Ortega J, Rico-González M. Validity and reliability of the ınertial measurement unit for barbell velocity assessments: A systematic review. Sensors (Basel). 2021;21(7):2511. [Crossref] [PubMed] [PMC]
- García-Ramos A, Pesta-a-Melero FL, Pérez-Castilla A, Rojas FJ, Gregory Haff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32(5):1273-9. [Crossref] [PubMed]
- González-Badillo JJ, Marques MC, Sánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29A:15-9. [Crossref] [PubMed] [PMC]
- Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):1091-116. [Crossref] [PubMed] [PMC]
- Izquierdo M, González-Badillo JJ, Häkkinen K, Ibá-ez J, Kraemer WJ, Altadill A, et al. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med. 2006;27(9):718-24. [Crossref] [PubMed]
- Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34(12):1099-106. [Crossref] [PubMed]
- González-Badillo JJ, Ya-ez-García JM, Mora-Custodio R, Rodríguez-Rosell D. Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med. 2017;38(3):217-25. [Crossref] [PubMed]
- Richter G. Ein trainergerät zur objektivierung der sportartspezifischen schnellkraftfähigkeit und zur trainingssteuerung im gewichtheben. Theorie und praxis des leistungssports 11. Beiheft 3 Doppelheft. 1973:241-63. [Link]
- Pareja-Blanco F, Alcazar J, Sánchez-Valdepe-as J, Cornejo-Daza PJ, Piqueras-Sanchiz F, Mora-Vela R, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):1752-62. [Crossref] [PubMed]
- Roe G, Till K, Darrall-Jones J, Phibbs P, Weakley J, Read D, et al. Changes in markers of fatigue following a competitive match in elite academy rugby union players. South African Journal of Sports Medicine. 2016;28(1):2-5. [Crossref]
- Weakley JJS, Wilson KM, Till K, Read DB, Darrall-Jones J, Roe GAB, et al. Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competi tiveness, and perceived workload in male adolescent athletes. J Strength Cond Res. 2019;33(9):2420-5. [Crossref] [PubMed]
- Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: From theory to application. Strength & Conditioning Journal. 2021;43(2):31-49. [Crossref]
- Nagata A, Doma K, Yamashita D, Hasegawa H, Mori S. The effect of augmented feedback type and frequency on velocity-based training-indu ced adaptation and retention. J Strength Cond Res. 2020;34(11):3110-7. [Crossref] [PubMed]
- Argus CK, Gill ND, Keogh JW, Hopkins WG. Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res. 2011;25(12):3282-7. [Crossref] [PubMed]
- Weakley J, Wilson K, Till K, Banyard H, Dyson J, Phibbs P, et al. Show me, tell me, encourage me: The effect of different forms of feedback on resistance training performance. J Strength Cond Res. 2020;34(11):3157-63. [Crossref] [PubMed]
- Weakley J, Wilson K, Till K, Read D, Scantlebury S, Sawczuk T, et al. Visual kinematic feedback enhances velocity, power, motivation and competitiveness in adolescent female athletes. Journal of Australian Strength and Conditioning. 2019;27(3). [Link]
- Wilson KM, de Joux NR, Head JR, Helton WS, Dang JS, Weakley JJS. Presenting objective visual performance feedback over multiple sets of resistance exercise improves motivation, competitiveness, and performance. Proceedings Of The Human Factors And Ergonomics Society Annual Meeting. 2018; 62(1):1306-10. [Crossref]
- Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25(1):267-70. [Crossref] [PubMed]
- Helms ER, Storey A, Cross MR, Brown SR, Lenetsky S, Ramsay H, et al. RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. J Strength Cond Res. 2017;31(2):292-7. [Crossref] [PubMed]
- García-Ramos A, Pesta-a-Melero FL, Pérez-Castilla A, Rojas FJ, Haff GG. Differences in the load-velocity profile between 4 bench-press variants. Int J Sports Physiol Perform. 2018;13(3):326-31. [Crossref] [PubMed]
- Torrejón A, Balsalobre-Fernández C, Haff GG, García-Ramos A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2019;18(3):245-55. [Crossref] [PubMed]
- Balsalobre-Fernández C, Marchante D, Baz-Valle E, Alonso-Molero I, Jiménez SL, Mu-óz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front Physiol. 2017;8:649. [Crossref] [PubMed] [PMC]
- Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):1897-904. [Crossref] [PubMed]
- Pérez-Castilla A, Piepoli A, Garrido-Blanca G, Delgado-García G, Balsalobre-Fernández C, García-Ramos A. Precision of 7 commercially available devices for predicting bench-press 1-repetition maximum from the individual load-velocity relationship. Int J Sports Physiol Perform. 2019;14(10):1442-6. [Crossref] [PubMed]
- Martínez-Cava A, Hernández-Belmonte A, Courel-Ibá-ez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS One. 2020;15(6):e0232465. Erratum in: PLoS One. 2020;15(7):e0236073. [Crossref] [PubMed] [PMC]
- Pérez-Castilla A, Piepoli A, Delgado-García G, Garrido-Blanca G, García-Ramos A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res. 2019;33(5):1258-65. [Crossref] [PubMed]
- Ozkaya G, Jung HR, Jeong IS, Choi MR, Shin MY, Lin X, et al. Three-dimensional motion capture data during repetitive overarm throwing practice. Sci Data. 2018;5:180272. [Crossref] [PubMed] [PMC]
- Harris NK, Cronin J, Taylor KL, Boris J, Sheppard J. Understanding position transducer technology for strength and conditioning prac titioners. Strength & Conditioning Journal. 2010;32(4):66-79. [Crossref]
- Ahmad N, Ghazilla RAR, Khairi NM, Kasi V. Reviews on various inertial measurement unit (IMU) sensor applications. International Journal of Signal Processing Systems. 2013;1(2): 256-62. [Crossref]
- Abbott JC, Wagle JP, Sato K, Painter K, Light TJ, Stone MH. Validation of inertial sensor to measure barbell kinematics across a spectrum of loading conditions. Sports (Basel). 2020;8(7): 93. [Crossref] [PubMed] [PMC]
- Balsalobre-Fernández C, Kuzdub M, Poveda-Ortiz P, Campo-Vecino JD. Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. J Strength Cond Res. 2016;30(7):1968-74. [Crossref] [PubMed]
- Sato K, Beckham GK, Carroll K, Bazyler C, Sha Z. Validity of wireless device measuring velocity of resistance exercises. Journal of Trainology. 2015;4(1):15-8. [Crossref]
- Lorenzetti S, Lamparter T, Lüthy F. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats. BMC Res Notes. 2017;10(1):707. [Crossref] [PubMed] [PMC]
- McGrath G, Flanagan E, O'Donovan P, Collins D Kenny I. Velocity based training: Validity of monitoring devices to assess mean concentric velocity in the bench press exercise. J Aust Strength Cond. 2018;26(1):23-30. [Link]
- Jovanovic M, Jukic I. Within-unit reliability and between-units agreement of the commercially available linear position transducer and barbell-mounted inertial sensor to measure movement velocity. J Strength Cond Res. 2020. [Crossref] [PubMed]
- Beckham GK, Layne DK, Kim SB, Martin EA, Perez BG, Adams KJ. Reliability and criterion validity of the assess2perform bar sensei. Sports (Basel). 2019;7(11):230. [Crossref] [PubMed] [PMC]
- Grgic J, Scapec B, Pedisic Z, Mikulic P. Test-retest reliability of velocity and power in the deadlift and squat exercises assessed by the gymaware powertool system. Front Physiol. 2020;11:561682. [Crossref] [PubMed] [PMC]
- Benavides-Ubric A, Díez-Fernández DM, Rodríguez-Pérez MA, Ortega-Becerra M, Pareja-Blanco F. Analysis of the load-velocity relation ship in deadlift exercise. J Sports Sci Med. 2020;19(3):452-9. [PubMed] [PMC]
- Balsalobre-Fernández C, Torres-Ronda L. The implementation of velocity-based training paradigm for team sports: Framework, technologies, practical recommendations and challenges. Sports (Basel). 2021;9(4):47. [Crossref] [PubMed] [PMC]
- Science for sport [İnternet]. © Copyright - Science for Sport Ltd 2016-2021 [Erişim tarihi: Nisan 2021]. Velocity based training. Erişim linki: [Link]
- Complementary training [İnternet]. ©2021 Complementary Training [Erişim tarihi: Nisan 2021]. How to create individualized exercise profile in strength training? Part 1: Testing. 2014. Erişim linki:[Link]
- Picerno P, Iannetta D, Comotto S, Donati M, Pecoraro F, Zok M, et al. 1RM prediction: a novel methodology based on the force-velocity and load-velocity relationships. Eur J Appl Physiol. 2016;116(10):2035-43. [Crossref] [PubMed]
- Kravitz L, Akalan C, Nowicki K, Kinzey SJ. Prediction of 1 repetition maximum in high-school power lifters. J Strength Cond Res. 2003;17(1):167-72. [Crossref] [PubMed]
- García-Ramos A, Ulloa-Díaz D, Barboza-González P, Rodríguez-Perea Á, Martínez-García D, Quidel-Catrilelbún M, et al. Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS One. 2019;14(2):e0212085. [Crossref] [PubMed] [PMC]
- Ruf L, Chéry C, Taylor KL. Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. J Strength Cond Res. 2018;32(3):681-9. [Crossref] [PubMed]
- García-Ramos A, Barboza-González P, Ulloa-Díaz D, Rodriguez-Perea A, Martinez-Garcia D, Guede-Rojas F, et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. J Sports Sci. 2019;37(19):2205-12. [Crossref] [PubMed]
- Pérez-Castilla A, Suzovic D, Domanovic A, Fernandes JFT, García-Ramos A. Validity of different velocity-based methods and repetitions-to-failure equations for predicting the 1 repetition maximum during 2 upper-body pulling exercises. J Strength Cond Res. 2021;35(7):1800-8. [PubMed]
- Banyard HG, Nosaka K, Vernon AD, Haff GG. The reliability of individualized load-velocity profiles. Int J Sports Physiol Perform. 2018;13(6):763-9. [Crossref] [PubMed]
- Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: A comparison of the different methods. J Strength Cond Res. 2019;33(9):2409-19. [Crossref] [PubMed]
- Garcia-Ramos A, Jaric S. Two-point method: A quick and fatigue-free procedure for assessment of muscle mechanical capacities and the 1 repetition maximum. Strength and Conditioning Journal. 2018;40(2):54-66. [Crossref]
- Pérez-Castilla A, Jaric S, Feriche B, Padial P, García-Ramos A. Evaluation of muscle mechanical capacities through the two-load method: Optimization of the load selection. J Strength Cond Res. 2018;32(5):1245-53. [Crossref] [PubMed]
- Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103-18. [Crossref] [PubMed]
- Bazuelo-Ruiz B, Padial P, García-Ramos A, Morales-Artacho AJ, Miranda MT, Feriche B. Predicting maximal dynamic strength from the load-velocity relationship in squat exercise. J Strength Cond Res. 2015;29(7):1999-2005. [Crossref] [PubMed]
- Sánchez-Medina L, González-Badillo JJ, Pérez CE, Pallarés JG. Velocity-and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35(3):209-16. [Crossref] [PubMed]
- Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123-9. [Crossref] [PubMed]
- Suchomel TJ, Nimphius S, Bellon CR, Hornsby WG, Stone MH. Training for muscular strength: Methods for monitoring and adjusting training intensity. Sports Med. 2021;51(10):2051-66. [Crossref] [PubMed]
- Weakley J, McLaren S, Ramirez-Lopez C, García-Ramos A, Dalton-Barron N, Banyard H, et al. Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci. 2019:1-9. [Crossref] [PubMed]
- Weakley J, Ramirez-Lopez C, McLaren S, Dalton-Barron N, Weaving D, Jones B, et al. The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. Int J Sports Physiol Perform. 2020;15(2):180-8. [Crossref] [PubMed]
- Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724-35. [Crossref] [PubMed]
.: Process List