Santral sinir sisteminde, inflamasyon gelişmesi nörolojik hastalıkların önemli ancak iyi anlaşılmamış bir durumudur. Akut beyin zedelenmesi veya enfeksiyonun ardından, astrositler ve mikrogliyanın etkinleşmesine ek olarak, kompleman faktörleri, sitokinler ve akut faz proteinlerinin oluşumundaki artmayı içeren karmaşık bir inflamatuar yanıt ortaya çıkmaktadır. T lenfositler ve antikorlar da ortaya çıkan bu yanıta katkıda bulunabilir. Zedelenmenin düzeltilmesinin daha güç, ancak kalıcı olduğu nörodejeneratif hastalıklarda inflamatuar yanıt süreklidir. Sürekli olan bu yanıtın başlıca amacı, ölen hücreler veya kümelenmiş proteinlerin temizlenmesi ile onarım işleminin başlatılmasının yanı sıra, dejenerasyon ve hücre ölümüne katkıda bulunma girişimidir. Hayvan modelleri, özgül inflamatuar mediyatörlerin nöroinflamatuar hastalıkların patojenezine katkısını araştırmak ve bu konuda yapılacak olan klinik araştırmalara temel oluşturabilecek bilgiler edinebilmek amacıyla kullanılmaktadır. Nöroinflamatuar hastalıkların oluşum mekanizmalarının ortaya konulması ve yeni tedavilerin geliştirilmesi ancak bu hastalıkların, deney hayvanlarında çalışılabilmesine olanak sağlayabilecek, deneysel modellerin oluşturulmasıyla gerçekleştirilebilir. Nörodejeneratif inflamatuar hastalıklar ile ilgili olarak elde edilecek daha fazla yeni veri, nöroinflamatuar hastalıkların insanlardaki klinik durumu en iyi derecede yansıtabilecek uygun deneysel modellerinin geliştirilmesine olanak tanıyabilecektir. Bu derlemede, en sık görülen Alzheimer hastalığı, Parkinson hastalığı, Hungtington hastalığı ile amyotrofik lateral skleroz gibi nöroinflamatuar hastalıkların kliniğinin yanı sıra, deneysel modellemesinde sıklıkla kullanılan transgenik ve transgenik olmayan yöntemler üzerinde durulmuştur. Ayrıca bu yöntemlerin sınırlamaları, avantajları ve dezavantajlarına değinilmiştir.
Anahtar Kelimeler: Santral sinir sistemi hastalıkları; nöroinflamasyon; deneysel hayvan modelleri
Inflammation in the central nervous system is an substantial, but not well understood condition of neurological diseases. Following acute brain injury or infection, a complex inflammatory response occurs involving activation of astrocytes and microglia in addition to enhanced formation of complement factors, cytokines, and acute phase proteins. T lymphocytes and antibodies may also contribute to this response. In neurodegenerative diseases, where injury is more subtle but consistent, the inflammatory response is continuous. The main purpose of this response may enterprise to clear dying cells or aggregated proteins and initiate repair process, but also contribute to degeneration and cell death. Animal models are useful to investigate the contribution of specific inflammatory mediators to the pathogenesis of neuroinflammatory diseases and obtain basic information that can be used for clinical research on this subject. The emergence mechanisms of neuroinflammatory diseases and development of new therapies are only possible by establishing experimental models capable of work in experimental animals. Further novel data about neurodegenerative inflammatory diseases will allow for the development of more appropriate experimental models that can best reflect the clinical situation of these diseases in humans. This review is focused on the clinical features of the most common neuroinflammatory diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, in addition to transgenic and non-trangenic methods frequently used in the experimental models of certain neurodegenerative diseases. The limitations, advantages, and disadvantages of these methods are also mentioned.
Keywords: Central nervous system diseases; neuroinflammation; experimental animal models
- DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139 Suppl 2(Suppl 2):136-53. [Crossref] [PubMed] [PMC]
- Carson MJ, Thrash JC, Walter B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res. 2006;6(5):237-45. [Crossref] [PubMed] [PMC]
- Ray WJ, Buggia-Prevot V. Novel Targets for Alzheimer's Disease: A View Beyond Amyloid. Annu Rev Med. 2021;72:15-28. [Crossref] [PubMed]
- Viola KL, Klein WL. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129(2):183-206. [Crossref] [PubMed] [PMC]
- Wirths O, Zampar S. Neuron Loss in Alzheimer's Disease: Translation in Transgenic Mouse Models. Int J Mol Sci. 2020;21(21):8144. [Crossref] [PubMed] [PMC]
- Wu Z, Yu J, Zhu A, Nakanishi H. Nutrients, Microglia Aging, and Brain Aging. Oxid Med Cell Longev. 2016;2016:7498528. [Crossref] [PubMed] [PMC]
- Gong Y, Meyer EM, Meyers CA, Klein RL, King MA, Hughes JA. Memory-related deficits following selective hippocampal expression of Swedish mutation amyloid precursor protein in the rat. Exp Neurol. 2006;200(2):371-7. [Crossref] [PubMed]
- Lawlor PA, Bland RJ, Das P, Price RW, Holloway V, Smithson L, et al. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Abeta levels. Mol Neurodegener. 2007;2:11. [Crossref] [PubMed] [PMC]
- Jaworski T, Dewachter I, Lechat B, Croes S, Termont A, Demedts D, et al. AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice. PLoS One. 2009;4(10):e7280. [Crossref] [PubMed] [PMC]
- Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155-75. [Crossref] [PubMed] [PMC]
- Chong FP, Ng KY, Koh RY, Chye SM. Tau Proteins and Tauopathies in Alzheimer's Disease. Cell Mol Neurobiol. 2018;38(5):965-80. [Crossref] [PubMed]
- Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016;8(6):595-608. [Crossref] [PubMed] [PMC]
- Ferretti MT, Partridge V, Leon WC, Canneva F, Allard S, Arvanitis DN, et al. Transgenic mice as a model of pre-clinical Alzheimer's disease. Curr Alzheimer Res. 2011;8(1):4-23. [Crossref] [PubMed]
- Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99-102. [Crossref] [PubMed]
- Dineley KT, Jahrling JB, Denner L. Insulin resistance in Alzheimer's disease. Neurobiol Dis. 2014;72 Pt A:92-103. [Crossref] [PubMed] [PMC]
- Castillo-Carranza DL, Sengupta U, Guerrero-Mu-oz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, et al. Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34(12):4260-72. [Crossref] [PubMed] [PMC]
- Hoefer M, Allison SC, Schauer GF, Neuhaus JM, Hall J, Dang JN, et al. Fear conditioning in frontotemporal lobar degeneration and Alzheimer's disease. Brain. 2008;131(Pt 6):1646-57. [Crossref] [PubMed] [PMC]
- Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373(6514):523-7. [Crossref] [PubMed]
- Do Carmo S, Cuello AC. Modeling Alzheimer's disease in transgenic rats. Mol Neurodegener. 2013;8:37. [Crossref] [PubMed] [PMC]
- Echeverria V, Ducatenzeiler A, Dowd E, Jänne J, Grant SM, Szyf M, et al. Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the beta-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience. 2004;129(3):583-92. [Crossref] [PubMed]
- Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR, Herrera VL. Attenuated hippocampus-dependent learning and memory decline in transgenic TgAPPswe Fischer-344 rats. Mol Med. 2004;10(1-6):36-44. [Crossref] [PubMed] [PMC]
- Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, et al. A transgenic rat model of Alzheimer's disease with extracellular Abeta deposition. Neurobiol Aging. 2009;30(7):1078-90. [Crossref] [PubMed]
- Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, et al. A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis. 2010;20(1):113-26. [Crossref] [PubMed]
- Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci. 2013;33(15):6245-56. [Crossref] [PubMed] [PMC]
- Kumar A, Aggarwal A, Singh A, Naidu PS. Animal Models in Drug Discovery of Alzheimer's Disease: A Mini Review. EC Pharmacol Toxicol. 2016;60-79. [Link]
- Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract. 2015;24(1):1-10. [Crossref] [PubMed] [PMC]
- Lecanu L, Greeson J, Papadopoulos V. Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology. 2006;76(1):19-33. [Crossref] [PubMed]
- Xiaoguang W, Jianjun C, Qinying C, Hui Z, Lukun Y, Yazhen S. Establishment of a Valuable Mimic of Alzheimer's Disease in Rat Animal Model by Intracerebroventricular Injection of Composited Amyloid Beta Protein. J Vis Exp. 2018;(137):56157. [Crossref] [PubMed] [PMC]
- Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11(3):309-17. [Crossref] [PubMed] [PMC]
- Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, et al. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J Diabetes Res. 2014;2014:796840. [Crossref] [PubMed] [PMC]
- Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, et al. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol. 2013;47(2):711-25. [Crossref] [PubMed] [PMC]
- Kraska A, Santin MD, Dorieux O, Joseph-Mathurin N, Bourrin E, Petit F, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One. 2012;7(9):e46196. [Crossref] [PubMed] [PMC]
- Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, et al. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl). 2014;231(2):345-56. [Crossref] [PubMed]
- Zhang H, Lin A, Gong P, Chen Y, Ye RD, Qian F, et al. The Chemokine-like Receptor 1 Deficiency Improves Cognitive Deficits of AD Mice and Attenuates Tau Hyperphosphorylation via Regulating Tau Seeding. J Neurosci. 2020;40(36):6991-7007. [Crossref] [PubMed] [PMC]
- Nolan YM, Sullivan AM, Toulouse A. Parkinson's disease in the nuclear age of neuroinflammation. Trends Mol Med. 2013;19(3):187-96. [Crossref] [PubMed]
- Vera E, Studer L. When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development. 2015;142(18):3085-9. [Crossref] [PubMed] [PMC]
- Blandini F, Armentero MT. Animal models of Parkinson's disease. FEBS J. 2012;279(7): 1156-66. [Crossref] [PubMed]
- Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Rev Neurol (Paris). 2015;171(11):750-61. [Crossref] [PubMed]
- Lee BD, Shin JH, VanKampen J, Petrucelli L, West AB, Ko HS, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med. 2010;16(9):998-1000. [Crossref] [PubMed] [PMC]
- Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson's disease. Neuron. 2010;66(5):646-61. [Crossref] [PubMed] [PMC]
- Haque ME, Mount MP, Safarpour F, Abdel-Messih E, Callaghan S, Mazerolle C, et al. Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J Biol Chem. 2012;287(27):23162-70. [Crossref] [PubMed] [PMC]
- Oliveras-Salvá M, Macchi F, Coessens V, Deleersnijder A, Gérard M, Van der Perren A, et al. Alpha-synuclein-induced neurodegeneration is exacerbated in PINK1 knockout mice. Neurobiol Aging. 2014;35(11):2625-36. [Crossref] [PubMed]
- Pickrell AM, Pinto M, Moraes CT. Mouse models of Parkinson's disease associated with mitochondrial dysfunction. Mol Cell Neurosci. 2013;55:87-94. [Crossref] [PubMed] [PMC]
- Bové J, Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 2012;211:51-76. [Crossref] [PubMed]
- Langston JW. The MPTP Story. J Parkinsons Dis. 2017;7(s1):S11-S19. [Crossref] [PubMed] [PMC]
- Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919-26. [Crossref] [PubMed] [PMC]
- Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007;2(1):141-51. [Crossref] [PubMed]
- Zhang QS, Heng Y, Mou Z, Huang JY, Yuan YH, Chen NH. Reassessment of subacute MPTP-treated mice as animal model of Parkinson's disease. Acta Pharmacol Sin. 2017;38(10):1317-1328. [Crossref] [PubMed] [PMC]
- Kamel F. Epidemiology. Paths from pesticides to Parkinson's. Science. 2013;341(6147):722-3. [Crossref] [PubMed]
- Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis. 2009;34(2):279-90. [Crossref] [PubMed] [PMC]
- Uversky VN. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res. 2004; 318(1):225-41. [Crossref] [PubMed]
- Tinakoua A, Bouabid S, Faggiani E, De Deurwaerdère P, Lakhdar-Ghazal N, Benazzouz A. The impact of combined administration of paraquat and maneb on motor and non-motor functions in the rat. Neuroscience. 2015;311:118-29. [Crossref] [PubMed]
- Ersoy N, Başak AN. Huntington hastalığı'nın moleküler biyolojisi [Molecular biology of Huntington's disease]. Turk J Neurol. 2005;11(1):27-44 [Link]
- Menalled LB, Chesselet MF. Mouse models of Huntington's disease. Trends Pharmacol Sci. 2002;23(1):32-9. [Crossref] [PubMed]
- Tang B, Seredenina T, Coppola G, Kuhn A, Geschwind DH, Luthi-Carter R, et al Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease. Neurobiol Dis. 2011;42(3):459-67. [Crossref] [PubMed] [PMC]
- Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet. 1999;8(3):397-407. Erratum in: Hum Mol Genet 1999;8(5):943. [Crossref] [PubMed]
- Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. Drug Des Devel Ther. 2015;9:2179-88. [Crossref] [PubMed] [PMC]
- Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci. 2013;14(10):708-21. [Crossref] [PubMed]
- Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, et al. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med. 2012;4(142): 142ra97. [Crossref] [PubMed] [PMC]
- Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9(11):617-28. [Crossref] [PubMed]
- Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197-206. [Crossref] [PubMed] [PMC]
- Lutz C. Mouse models of ALS: Past, present and future. Brain Res. 2018;1693(Pt A):1-10. [Crossref] [PubMed]
- Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin. 2015;33(4): 855-76. [Crossref] [PubMed] [PMC]
- Mackenzie IR, Frick P, Grässer FA, Gendron TF, Petrucelli L, Cashman NR, et al. Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol. 2015;130(6):845-61. [Crossref] [PubMed]
- Liu Y, Pattamatta A, Zu T, Reid T, Bardhi O, Borchelt DR, et al. C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD. Neuron. 2016;90(3): 521-34. [Crossref] [PubMed]
- Philips T, Rothstein JD. Rodent Models of Amyotrophic Lateral Sclerosis. Curr Protoc Pharmacol. 2015;69:5.67.1-5.67.21. [Crossref] [PubMed] [PMC]
- Joyce PI, Fratta P, Fisher EM, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome. 2011;22(7-8):420-48. [Crossref] [PubMed]
- Morrice JR, Gregory-Evans CY, Shaw CA. Animal models of amyotrophic lateral sclerosis: A comparison of model validity. Neural Regen Res. 2018;13(12):2050-4. [Crossref] [PubMed] [PMC]
- Tabata RC, Wilson JM, Ly P, Zwiegers P, Kwok D, Van Kampen JM, et al. Chronic exposure to dietary sterol glucosides is neurotoxic to motor neurons and induces an ALS-PDC phenotype. Neuromolecular Med. 2008;10(1):24-39. [Crossref] [PubMed] [PMC]
- Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370-9. [Crossref] [PubMed] [PMC]
.: Process List