Yer kabuğunda ikinci olarak en fazla bulunan metal olan demir, hemen bütün canlı formları için temel bir besin ögesidir. İndirgenme ve yükseltgenme kabiliyetinden dolayı demir, solunum ve DNA replikasyonu dâhil çeşitli hücresel işlemler için ideal bir redoks katalizörüdür. Bu redoks potansiyeli çeşitli sağlık yararları sağlarken aynı zamanda dokularda toksisite oluşmasına da neden olabilmektedir. İntraselüler serbest demir, genellikle reaktif oksijen türlerinin oluşumunu katalize etme kabiliyetinden dolayı NF- κB aktivasyonunu başlatarak proinflamatuar sitokin salınımını artırmaktadır. Demir eksikliğinde canlılarda immün yanıtın azaldığı bilinmektedir. Ayrıca, demirin patojenler için mutlak gereksinimi göz önüne alındığında, doğuştan immün sistemin mikrobiyal gelişimi baskılaması adına demir düzeyinin sınırlanması oldukça önemli bir stratejidir. Bu strateji, sistemik demir metabolizmasının ana düzenleyici mekanizması olarak bilinen hepsidin-ferroportin aksındaki düzenlemelerden, patojenik bakterilerin demir toplamasını önleyen siderokalin ekspresyonuna kadar uzanmaktadır. Özellikle enfeksiyöz hastalıkların insidansı ve seyriyle ilgili olarak, vücudun demir durumu ve immün fonksiyon arasında hâlen tam olarak anlaşılamamış bir etkileşim bulunmaktadır. Demir eksikliğine bağlı olarak enfeksiyonlara yatkınlığın artığını gösteren çalışmalar olmasına karşın, demir takviyesiyle şiddetli hastalık ve ölüm risklerinin, bağırsakta inflamasyonun ve ishal sıklıklarının arttığını gösteren çalışmalar da mevcuttur. Demir eksikliği veya fazlalığı durumunda immün sistemin olumsuz etkileneceğini gösteren bu çalışmalar incelendiğinde, vücutta demir homeostazisinin çok sıkı kontrol altında tutulması gerektiği anlaşılmaktadır. Vücut demir homeostazisinin bozulduğu demir eksikliği anemisi ve inflamasyon anemisinde kullanılan demir takviyelerinin yanı sıra; hepsidin antagonistlerinin kullanımı, hemokromatozis ve talasemi gibi demir birikimi ile seyreden hastalıklarda ise demir şelatörleri ve flebotomi uygulanmasının yanı sıra hepsidin agonistlerinin kullanımı demir homeostazisinin düzenlenmesinde gelecekteki tedavi yöntemlerini oluşturacaktır.
Anahtar Kelimeler: Demir; hepsidin; hepsidin antagonistleri; hepsidin agonistleri; immün sistem
Iron, the second most common metal in the crust, is an essential nutrient for almost all living forms. Iron is an ideal redox catalyst for various cellular processes including cellular respiration and DNA replication due to its reduction and oxidation ability. This redox potential of iron provides various health benefits while contributing to toxicity in tissues at the same time. Intracellular free iron initiates NF-κB activation due to its ability to catalyze the formation of reactive oxygen species, increasing proinflammatory cytokine release. Iron deficiency is known to decrease immune response in living organisms. Also, considering the absolute requirement of iron for pathogens, limiting iron levels is an important strategy for the innate immune system to suppress microbial growth. This strategy extends from the regulations of the hepcidin-ferroportin axis, known as the main regulatory mechanism of systemic iron metabolism, to the expression of siderocalin which inhibits the iron collection of pathogenic bacteria. With regard to the incidence and course of infectious diseases, there is a complex and still not fully understood the interaction between the iron status and immune function. Although there are studies showing increased susceptibility to infections due to iron deficiency, there are also studies showing that iron supplementation increases the incidence of severe disease and death, intestinal inflammation and diarrhea frequency. When the studies showing that the immune system will be adversely affected in case of iron deficiency or excess, it is understood that iron homeostasis in the body should be kept under strict control. In addition to iron supplements used in iron deficiency anemia and inflammation anemia in which body iron metabolism is impaired, the use of hepcidin antagonists and in addition to iron chelators and phlebotomy used in diseases with iron accumulation such as hemochromatosis and thalassemia, the use of hepcidin agonists constitute future treatment methods in the regulation of iron homeostasis.
Keywords: Iron; hepcidin; hepcidin antagonists; hepcidin agonists; immune system
- Rasmussen B, Krapez B, Muhling JR, Suvorova A. Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth's first iron age. Geology. 2015;43(4):303-6. [Crossref]
- Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, Dasgupta J, Tyryshkin A. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A. 2001;98(5):2170-5. [Crossref] [PubMed] [PMC]
- Lane N. Oxygen: the Molecule That Made the World. 1st ed. Oxford: Oxford University Press; 2004. p.374.
- Xing W, Liu G. Iron biogeochemistry and its environmental impacts in freshwater lakes. Fresen Environ Bull. 2011;20(6):1339-45.
- Martins AC, Almeida JI, Lima IS, Kapitao AS, Gozzelino R. Iron metabolism and the inflammatory response. IUBMB Life. 2017;69(6):442-50. [Crossref] [PubMed]
- Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344-61. [Crossref] [PubMed] [PMC]
- Larsen R, Gozzelino R, Jeney V, Tokaji L, Bozza FA, Japiassu AM, et al. A central role for free heme in the pathogenesis of severe sepsis. Sci Transl Med. 2010;2(51):51ra71. [Crossref] [PubMed]
- Sukhbaatar N, Weichhart T. Iron regulation: macrophages in control. Pharmaceuticals (Basel). 2018;11(4):137. [Crossref] [PubMed] [PMC]
- Oppenheimer SJ. Anaemia of infancy and bacterial infections in Papua New Guinea. Ann Trop Med Parasitol. 1980;74(1):69-72. [Crossref] [PubMed]
- Hussain SQ, Ashraf M, Wani JG, Ahmed J. Low hemoglobin level a risk factor for acute lower respiratory tract infections (ALRTI) in children. J Clin Diagn Res. 2014;8(4):PC01-3. [Crossref] [PubMed] [PMC]
- Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133-43. [Crossref]
- Murray MJ, Murray AB, Murray MB, Murray CJ. The adverse effect of iron repletion on the course of certain infections. Br Med J. 1978;2(6145):1113-5. [Crossref] [PubMed] [PMC]
- Gangaidzo IT, Moyo VM, Mvundura E, Aggrey G, Murphhree ML, Khumalo M, et al. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis. 2001;184(7):936-9. [Crossref] [PubMed]
- Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6(8):e1000949. [Crossref] [PubMed] [PMC]
- Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A et al. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev. 2017;75(1):49-60. [Crossref] [PubMed] [PMC]
- Beck KL, Conlon CA, Kruger R, Coad J. Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: a review. Nutrients. 2014;6(9):3747-76. [Crossref] [PubMed] [PMC]
- Pereira DI, Mergler BI, Faria N, Bruggraber SF, Aslam MF, Poots LK, et al. Caco-2 cell acquisition of dietary iron(III) invokes a nanoparticulate endocytic pathway. PLoS One. 2013;8(11):e81250. [Crossref] [PubMed] [PMC]
- Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell. 2005;122(5):789-801. [Crossref] [PubMed]
- Zhu X, Fan WG, Li DP, Kung H, Lin MC. Heme oxygenase-1 system and gastrointestinal inflammation: a short review. World J Gastroenterol. 2011;17(38):4283-8. [Crossref] [PubMed] [PMC]
- Petrak J, Vyoral D. Hephaestin--a ferroxidase of cellular iron export. Int J Biochem Cell Biol. 2005;37(6):1173-8. [Crossref] [PubMed]
- Zoller H, Theurl I, Koch RO, Mckie AT, Vogel W, Weiss G. Duodenal cytochrome b and hephaestin expression in patients with iron deficiency and hemochromatosis. Gastroenterology. 2003;125(3):746-54. [Crossref]
- Byrne SL, Krishnamurthy D, Wessling-Resnick M. Pharmacology of iron transport. Annu Rev Pharmacol Toxicol. 2013;53(1):17-36. [Crossref] [PubMed] [PMC]
- Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, et al. Physiology of iron metabolism. Transfus Med Hemother. 2014;41(3):213-21. [Crossref] [PubMed] [PMC]
- Katsarou A, Pantopoulos K. Hepcidin therapeutics. Pharmaceuticals (Basel). 2018;11(4):127. [Crossref] [PubMed] [PMC]
- Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator. Biosci Rep. 2015;35(3). [Crossref] [PubMed] [PMC]
- Parrow NL, Fleming RE. Bone morphogenetic proteins as regulators of iron metabolism. Annu Rev Nutr. 2014;34:77-94. [Crossref] [PubMed]
- Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204-9. [Crossref] [PubMed] [PMC]
- Arezes J, Foy N, McHugh K, Sawant A, Quinkert D, Terraube V, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14):1473-7. [Crossref] [PubMed] [PMC]
- Preziosi P, Hercberg S, Galan P, Devanlay M, Cherouvrier F, Dupin H. Iron status of a healthy french population: factors determining biochemical markers. Ann Nutr Metab. 1994;38(4):192-202. [Crossref] [PubMed]
- Rangan AM, Aitkin I, Blight GD, Binns CW. Factors affecting iron status in 15-30 year old female students. Asia Pac J Clin Nutr. 1997;6(4):291-5.
- Galan P, Yoon HC, Preziosi P, Viteri F, Valeix P, Fieux B, et al. Determining factors in the iron status of adult women in the SU.VI.MAX study. Eur J Clin Nutr. 1998;52(6):383-8. [Crossref] [PubMed]
- Heath AL, Skeaff CM, Williams S, Gibson RS. The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Public Health Nutr. 2001;4(2):197-206. [Crossref] [PubMed]
- Pynaert I, De Bacquer D, Matthys C, Delanphe J, Temmerman M, De Backer G, et al. Determinants of ferritin and soluble transferrin receptors as iron status parameters in young adult women. Public Health Nutr. 2009;12(10):1775-82. [Crossref] [PubMed]
- Asakura K, Sasaki S, Murakami K, Takahashi Y, Uenishi K, Yamakawa M, et al; Japan Dietetic Students' Study for Nutrition and Biomarkers Group. Iron intake does not significantly correlate with iron deficiency among young Japanese women: a cross-sectional study. Public Health Nutr. 2009;12(9):1373-83. [Crossref] [PubMed]
- Cade JE, Moreton JA, O'Hara B, Greenwood DC, Moor J, Burley VJ, et al. Diet and genetic factors associated with iron status in middle-aged women. Am J Clin Nutr. 2005;82(4):813-20. [Crossref] [PubMed]
- Rigas AS, Sorensen CJ, Pedersen OB, Petersen MS, Thorner LW, Kotze S, et al. Predictors of iron levels in 14,737 Danish blood donors: results from the Danish Blood Donor Study. Transfusion. 2014;54(3 Pt 2):789-96. [Crossref] [PubMed] [PMC]
- Weinborn V, Valenzuela C, Olivares M, Arredondo M, Weill R, Pizarro F. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food Funct. 2017;8(5):1994-9. [Crossref] [PubMed]
- Ilich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, et al. Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr. 1998;68(4):880-7. [Crossref] [PubMed]
- Minihane AM, Fairweather-Tait SJ. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am J Clin Nutr. 1998;68(1):96-102. [Crossref] [PubMed]
- Sokoll LJ, Dawson-Hughes B. Calcium supplementation and plasma ferritin concentrations in premenopausal women. Am J Clin Nutr. 1992;56(6):1045-8. [Crossref] [PubMed]
- Puig S, Ramos-Alonso L, Romero AM, Martinez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017;9(11):1483-500. [Crossref] [PubMed]
- White MF, Dillingham MS. Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol. 2012;22(1):94-100. [Crossref] [PubMed]
- Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637-50. [Crossref] [PubMed]
- Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun. 2013;82(2):745-52. [Crossref] [PubMed] [PMC]
- Wei X, Sarath Babu V, Lin L, Hu Y, Zhang Y, Liu X, et al. Hepcidin protects grass carp (Ctenopharyngodon idellus) against Flavobacterium columnare infection via regulating iron distribution and immune gene expression. Fish Shellfish Immunol. 2018;75:274-83. [Crossref] [PubMed]
- Portugal S, Carret C, Recker M, Armitage AE, Goncalves LA, Epiphanio S, et al. Host-mediated regulation of superinfection in malaria. Nat Med. 2011;17(6):732-7. [Crossref] [PubMed] [PMC]
- Kerkhoff AD, Meintjes G, Burton R, Vogt M, Wood R, Lawn SD. Relationship between blood concentrations of hepcidin and anemia severity, mycobacterial burden, and mortality among patients with HIV-associated tuberculosis. J Infect Dis. 2016;213(1):61-70. [Crossref] [PubMed] [PMC]
- van Eijk LT, Kroot JJ, Tromp M, van der Hoeven JG, Swinkels DW, Pickkers P. Inflammation-induced hepcidin-25 is associated with the development of anemia in septic patients: an observational study. Crit Care. 2011;15(1):R9. [Crossref] [PubMed] [PMC]
- Uribe-Querol E, Rosales C. Control of phagocytosis by microbial pathogens. Front Immunol. 2017;8:1368. [Crossref] [PubMed] [PMC]
- Wang L, Cherayil BJ. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun. 2009;1(5):455-64. [Crossref] [PubMed] [PMC]
- Chlosta S, Fishman DS, Harrington L, Johnson EE, Knutson MD, Wessling-Resnick M, et al. The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica. Infect Immun. 2006;74(5):3065-7. [Crossref] [PubMed] [PMC]
- Nairz M, Fritsche G, Brunner P, Talasz H, Hantke K, Weiss G. Interferon-? limits the availability of iron for intramacrophage Salmonella typhimurium. Eur J Immunol. 2008;38(7):1923-36. [Crossref] [PubMed]
- Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. Iron depletion limits intracellular bacterial growth in macrophages. Blood. 2008;112(3):866-74. [Crossref] [PubMed] [PMC]
- Van Zandt KE, Sow FB, Florence WC, Zwilling BS, Satoskar AR, Schlesinger LS, et al. The iron export protein ferroportin 1 is differentially expressed in mouse macrophage populations and is present in the mycobacterial-containing phagosome. J Leukoc Biol. 2008;84(3):689-700. [Crossref] [PubMed] [PMC]
- Samaniego-Barron L, Luna-Castro S, Pina-Vazquez C, Suarez-Guemes F, de la Garza M. Two outer membrane proteins are bovine lactoferrin-binding proteins in Mannheimia haemolytica A1. Vet Res. 2016;47(1):93. [Crossref] [PubMed] [PMC]
- Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci. 2017;18(9). [Crossref] [PubMed] [PMC]
- Fischbach MA, Lin H, Liu DR, Walsh CT. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol. 2006;2(3):132-8. [Crossref] [PubMed]
- Hantke K. Iron and metal regulation in bacteria. Curr Opin Microbiol. 2001;4(2):172-7. [Crossref]
- Jacobi CA, Gregor S, Rakin A, Heesemann J. Expression analysis of the yersiniabactin receptor fyuA and the heme receptor hemR of Yersinia enterocolitica in vitro and in vivo using the reporter genes for green fluorescent protein and luciferase. Infect Immun. 2001;69(12):7772-82. [Crossref] [PubMed] [PMC]
- Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure. 2005;13(1):29-41. [Crossref] [PubMed]
- Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, et al. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2006;103(6):1834-9. [Crossref] [PubMed] [PMC]
- Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S, Sato S, et al. Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol. 2008;181(12):8521-7. [Crossref] [PubMed]
- Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117(7):1988-94. [Crossref] [PubMed] [PMC]
- Meseri R. [Immune system and iron: double edged sword]. Turkiye Klinikleri J Nutr Diet-Special Topics. 2016;2(2):72-6.
- Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. [Crossref] [PubMed] [PMC]
- Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 2016;23(3):189-97. [Crossref] [PubMed] [PMC]
- Templeton DM, Liu Y. Genetic regulation of cell function in response to iron overload or chelation. Biochim Biophys Acta. 2003;1619(2):113-24. [Crossref]
- Liu T, Zhang L, Joo D, Sun SC. NF-?B signaling in inflammation. Signal Transduct Target Ther. 2017;2. [Crossref] [PubMed] [PMC]
- Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. [Crossref] [PubMed] [PMC]
- Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7-11. [Crossref] [PubMed] [PMC]
- She H, Xiong S, Lin M, Zandi E, Giulivi C, Tsukamoto H. Iron activates NF-kappaB in Kupffer cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G719-26. [Crossref] [PubMed]
- Xiong S, She H, Takeuchi H, Han B, Engelhardt JF, Barton CH, et al. Signaling role of intracellular iron in NF- kappaB activation. J Biol Chem. 2003;278(20):17646-54. [Crossref] [PubMed]
- Nairz M, Theurl I, Ludwiczek S, Theurl M, Mair SM, Fritsche G, et al. The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell Microbiol. 2007;9(9):2126-40. [Crossref] [PubMed]
- Stocker R, Perrella MA. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation. 2006;114(20):2178-89. [Crossref] [PubMed]
- Ryter SW, Choi AM. Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Found Symp. 2007;280:165-81. [Crossref]
- Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1?. Mol Cell. 2010;40(4):509-20. [Crossref] [PubMed] [PMC]
- Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207-14. [Crossref] [PubMed] [PMC]
- Koh MY, Powis G. Passing the button: the HIF swich. Trends Biochem Sci. 2012;37(9):364-72. [Crossref] [PubMed] [PMC]
- Peyssonnaux C, Nizet V, Johnson RS. Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle. 2008;7(1):28-32. [Crossref] [PubMed]
- Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. BioMed Res Int. 2015;2015:549412. [Crossref] [PubMed] [PMC]
- Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, et al. HIF-1? is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645-57. [Crossref]
- Camaschella C. Iron deficiency. Blood. 2019;133(1):30-9. [Crossref] [PubMed]
- T.C. Saglik Bakanligi, Turkiye Halk Sagiligi Kurumu. Turkiye Beslenme Rehberi 2015 (TUBER). T.C. Saglik Bakanligi Yayin No: 1031. Ankara: Kayhan Ajans; 2016. p.157.
- Baysal A. Su ve Mineraller. Beslenme. 12. Baski. Ankara: Hatiboglu Basim ve Yayim; 2009. p.132-3.
- TURKOMP. Ulusal Gida Kompozisyon Veri Tabani 2019. http://www.turkomp.gov.tr/main, Accessed January 09, 2019.
- Cavusoglu Y, Altay H, Cetiner M, Guvenc TS, Temizhan A, Ural D, et al. Iron deficiency and anemia in heart failure. Turk Kardiyol Dern Ars. 2017;Suppl 2:1-38. [Crossref] [PubMed]
- Cohen-Solal A, Leclercq C, Deray G, Lasocki S, Zambrowski JJ, Mebazaa A, et al. Iron deficiency: an emerging therapeutic target in heart failure. Heart. 2014;100(18):1414-20. [Crossref] [PubMed]
- Sharma R, Stanek JR, Koch TL, Grooms L, O'Brien SH. Intravenous iron therapy in nonanemic iron-deficient menstruating adolescent females with fatigue. Am J Hematol. 2016;91(10):973-7. [Crossref] [PubMed]
- Yildiz A, Albayrak M. [Treatment of iron deficiency anemia in adults]. Turkiye Klinikleri J Hematol-Special Topics. 2017;10(3):182-7.
- Tolkien Z, Stecher L, Mander AP, Pereira DI, Powell JJ. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383. [Crossref] [PubMed] [PMC]
- Nemeth E, Ganz T. Anemia of inflammation. Hematol Oncol Clin North Am. 2014;28(4):671-81. [Crossref] [PubMed] [PMC]
- Miyanishi K, Tanaka S, Skamoto H, Kato J. The rol of iron in hepatic inflammation and hepatocellular carcinoma. Free Radic Biol Med. 2019;133:200-5. [Crossref] [PubMed]
- Kaitha S, Bashir M, Ali T. Iron deficiency anemia in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2015;6(3):62-72. [Crossref] [PubMed] [PMC]
- Groenveld HF, Januzzi JL, Damman K, van Wijngaarden J, Hillege HL, van Veldhuisen DJ, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818-27. [Crossref] [PubMed]
- Jankowska E, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31(15):1872-80. [Crossref] [PubMed]
- Toblli JE, Lombra-a A, Duarte P, Di Gennaro F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol. 2007;50(17):1657-65. [Crossref] [PubMed]
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(27):2129-200.
- Mu-oz M, Garcia-Erce JA, Remacha AF. Disorders of iron metabolism. Part II: iron deficiency and iron overload. J Clin Pathol. 2011;64(4):287-96. [Crossref] [PubMed]
- Kanwar P, Kowdley KV. Diagnosis and treatment of hereditary hemochromatosis: an update. Expert Rev Gastroenterol Hepatol. 2013;7(6):517-30. [Crossref] [PubMed]
- Cjaza AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis-pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther. 2019;49(6):681-701. [Crossref] [PubMed]
- Casu C, Oikonomidou PR, Chen H, Nandi V, Ginzburg Y, Prasad P, et al. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. Blood. 2016;128(2):265-26. [Crossref] [PubMed] [PMC]
- Ramos E, Ruchala P, Goodnough JB, Kautz L, Preza GC, Nemeth E, et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood. 2012;120(18):3829-36. [Crossref] [PubMed] [PMC]
- Liu J, Sun B, Yin H, Liu S. Hepcidin: a promising therapeutic target for iron disorders. Medicine (Baltimore). 2016;95(14):e3150. [Crossref] [PubMed] [PMC]
.: Process List