Prokaryotlara ait savunma mekanizması bileşenleri kullanılarak geliştirilen düzenli aralıklarla bölünmüş kısa palindromik tekrar kümeleri [clustered regularly interspaced palindromic repeats (CRISPR)-Cas] sistemi hedefe özgü gen düzenleme aracı olarak in vitro ve in vivo çalışmalarda yaygın olarak kullanılmaktadır. CRISPR-Cas sisteminin kullanım alanları arasında gen silme, gen ekleme, baz düzeltme, gen ifadesi düzenleme, genomik lokusları görüntüleme, epigenetik düzenleme ve diagnostik analizler yer almaktadır. Bu sistemin güçlü özellikleri arasında bulunan esnekliği, çok yönlülüğü ve kolay uygulanabilirliği kullanım alanlarının giderek artmasına yol açmıştır. Son yıllarda, genlerin biyolojik süreçler ve hücresel işlevlerdeki rollerini aydınlatmak için de CRISPR-Cas9 temelli fonksiyonel genetik tarama çalışmaları yapılmaktadır. CRISPR taramaları, başta kanser olmak üzere, hastalığa bağlı olarak hücrelerin hayatta kalabilmeleri için gerekli olan, hastalık gelişiminden sorumlu genetik faktörlerin tanımlanması ve fonksiyonlarının belirlenmesi için kullanılmaktadır. Amaca uygun seçilmiş gRNA kütüphanesinin hazırlanması ve çoğaltılması, ilgili plazmide klonlama, lentivirüslere paketleme ve hücrelere lentiviral transdüksiyon, fenotipik seçilim, yeni nesil DNA dizi analizi ve biyoinformatik analiz aşamalarından oluşan CRISPR-Cas temelli taramalar, fonksiyonel genetik çalışmalarının yüksek verimlilik ve doğrulukta yapılabilmesini mümkün kılmıştır. Patojen-konakçı etkileşimlerinin araştırılması, hastalıkların moleküler mekanizmalarının ortaya konması, yeni tedavi hedeflerinin bulunması ve tedavi direncinde rol oynayan genetik faktörlerin belirlenmesi gibi farklı amaçlara yönelik tarama çalışmaları da yapılabilmektedir. Bu derlemede, farklı CRISPR-Cas sistemleri kısaca özetlendikten sonra genetik tarama çalışmalarının temel mantığı, uygulanışı ve kullanım alanları güncel literatürden seçilen örneklerle tartışılacaktır.
Anahtar Kelimeler: CRISPR-Cas; CRISPR tarama; fonksiyonel genetik tarama; gRNA kütüphanesi
The clustered regularly interspaced palindromic repeats (CRISPR)-associated Cas system, derived from the defence mechanism components of prokaryotes, is frequently used as a target specific gene editing tool in in vitro and in vivo studies. Uses of the CRISPR-Cas system include gene deletion, gene insertion, base editing, gene expression editing, genomic locus imaging, epigenetic editing, and diagnostic analysis. Due to the strengths of the system such as flexibility, versatility and easy application, its usage areas have gradually increased. In recent years, CRISPR-Cas9 based functional genetic screen studies have been carried out to understand the roles of genes in the biological processes and cellular functions. CRISPR screens are used to identify genetic factors responsible for disease development and determine their functions, which are necessary for the survival of cells due to disease, especially cancer. CRISPR-Cas9 screens consisting of desing and amplification of the selected gRNA library, cloning in the relevant plasmid, packaging into lentiviruses and lentiviral transduction into cells, phenotypic selection, next generation DNA sequence analysis and bioinformatics analysis, has allowed functional genetic studies that can be performed with high-throughput and high-efficiency. Screening studies can be carried out for different purposes such as investigating pathogen-host interactions, revealing the molecular mechanisms of diseases, identifying novel therapeutic targets and revealing factors that play a key role in treatment resistance. In this review, after a short summary of different CRISPRCas systems the basic principles of genetic screening studies, their application and areas of usage will be discussed with selected examples from the current literature.
Keywords: CRISPR-Cas; CRISPR screen; functional genetic screen; gRNA library
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12. [Crossref] [PubMed]
- Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54(2):234-44. [Crossref] [PubMed] [PMC]
- Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67-83. [Crossref] [PubMed] [PMC]
- Taylor HN, Laderman E, Armbrust M, Hallmark T, Keiser D, Bondy-Denomy J, et al. Positioning diverse Type IV structures and functions within class 1 CRISPR-cas systems. Front Microbiol. 2021;12:671522. [Crossref] [PubMed] [PMC]
- East-Seletsky A, O'Connell MR, Burstein D, Knott GJ, Doudna JA. RNA targeting by functionally orthogonal type VI-A CRISPR-cas enzymes. Mol Cell. 2017;66(3):373-83.e3. [Crossref] [PubMed] [PMC]
- Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. 2017;46:505-29. [Crossref] [PubMed]
- Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci US A. 2014;111(27):9798-803. [Crossref] [PubMed] [PMC]
- Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229-36. [Crossref] [PubMed] [PMC]
- Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125-9. [Crossref] [PubMed]
- Janz A, Zink M, Cirnu A, Hartleb A, Albrecht C, Rost S, et al. CRISPR/Cas9-edited PKP2 knock-out (JMUi001-A-2) and DSG2 knock-out (JMUi001-A-3) iPSC lines as an isogenic human model system for arrhythmogenic cardiomyopathy (ACM). Stem Cell Res. 2021;53:102256. [Crossref] [PubMed]
- Detsika MG, Goudevenou K, Geurts AM, Gakiopoulou H, Grapsa E, Lianos EA. Generation of a novel decay accelerating factor (DAF) knock-out rat model using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9), genome editing. Transgenic Res. 2021;30(1):11-21. [Crossref] [PubMed]
- Dara M, Razban V, Talebzadeh M, Moradi S, Dianatpour M. Using CRISPR/Cas9 system to knock out exon 48 in DMD gene. Avicenna J Med Biotechnol. 2021;13(2):54-7. [Crossref] [PubMed] [PMC]
- Schlager S, Salomon C, Olt S, Albrecht C, Ebert A, Bergner O, et al. Inducible knock-out of BCL6 in lymphoma cells results in tumor stasis. Oncotarget. 2020;11(9):875-90. [Crossref] [PubMed] [PMC]
- Skvarova Kramarzova K, Osborn MJ, Webber BR, DeFeo AP, McElroy AN, Kim CJ, et al. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int J Mol Sci. 2017;18(6):1269. [Crossref] [PubMed] [PMC]
- Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326-8. [Crossref] [PubMed] [PMC]
- Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280-4. [Crossref] [PubMed] [PMC]
- Xie N, Zhou Y, Sun Q, Tang B. Novel epigenetic techniques provided by the CRISPR/Cas9 system. Stem Cells Int. 2018;2018:7834175. [Crossref] [PubMed] [PMC]
- Kang JG, Park JS, Ko JH, Kim YS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep. 2019;9(1):11960. [Crossref] [PubMed] [PMC]
- Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464-71. Erratum in: Nature. 2018. [Crossref] [PubMed] [PMC]
- Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36(9):843-6. [Crossref] [PubMed] [PMC]
- Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824-44. [Crossref] [PubMed]
- Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-57. [Crossref] [PubMed] [PMC]
- Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021;7(18):eabg4910. [Crossref] [PubMed] [PMC]
- Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731-40. [Crossref] [PubMed] [PMC]
- Wu X, Mao S, Ying Y, Krueger CJ, Chen AK. Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics Proteomics Bioinformatics. 2019;17(2):119-28. [Crossref] [PubMed] [PMC]
- Chen B, Deng S, Ge T, Ye M, Yu J, Lin S, et al. Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in. Protein Cell. 2020;11(9):641-60. [Crossref] [PubMed] [PMC]
- Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155(7):1479-91. Erratum in: Cell. 2014;156(1-2):373. [Crossref] [PubMed] [PMC]
- Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 2019;76(5):826-37.e11. [Crossref] [PubMed] [PMC]
- Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N Engl J Med. 2020;383(15):1492-4. [Crossref] [PubMed] [PMC]
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-11. [Crossref] [PubMed]
- Moffat J, Sabatini DM. Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol. 2006;7(3):177-87. [Crossref] [PubMed]
- Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84-7. [Crossref] [PubMed] [PMC]
- Agrotis A, Ketteler R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front Genet. 2015;6:300. [Crossref] [PubMed] [PMC]
- Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods. 2017;14(3):297-301. [Crossref] [PubMed] [PMC]
- Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12(4):828-63. Erratum in: Nat Protoc. 2019;14(7):2259. [Crossref] [PubMed] [PMC]
- Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163(6):1515-26. [Crossref] [PubMed]
- Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol. 2018;13(2):406-16. [Crossref] [PubMed] [PMC]
- Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635-46. [Crossref] [PubMed] [PMC]
- Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol. 2017;35(6):561-8. [Crossref] [PubMed] [PMC]
- Radzisheuskaya A, Shlyueva D, Müller I, Helin K. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res. 2016;44(18):e141. [Crossref] [PubMed] [PMC]
- Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife. 2016;5:e19760. [Crossref] [PubMed] [PMC]
- Addgene [Internet]. [Cited: December 12, 2021]. Pooled libraries. Available from: [Link]
- Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184-91. [Crossref] [PubMed] [PMC]
- Otten ABC, Sun BK. Research Techniques made simple: CRISPR genetic screens. J Invest Dermatol. 2020;140(4):723-8.e1. [Crossref] [PubMed] [PMC]
- Gonçalves E, Thomas M, Behan FM, Picco G, Pacini C, Allen F, et al. Minimal genome-wide human CRISPR-Cas9 library. Genome Biol. 2021;22(1):40. [Crossref] [PubMed] [PMC]
- Iyer VS, Jiang L, Shen Y, Boddul SV, Panda SK, Kasza Z, et al. Designing custom CRISPR libraries for hypothesis-driven drug target discovery. Comput Struct Biotechnol J. 2020;18:2237-46. [Crossref] [PubMed] [PMC]
- Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927-30. [Crossref] [PubMed]
- Doench JG. Am I ready for CRISPR? A user's guide to genetic screens. Nat Rev Genet. 2018;19(2):67-80. [Crossref] [PubMed]
- Luther DC, Lee YW, Nagaraj H, Scaletti F, Rotello VM. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv. 2018;15(9):905-13. [Crossref] [PubMed] [PMC]
- Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17-26. [Crossref] [PubMed] [PMC]
- Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-308. [Crossref] [PubMed] [PMC]
- Sun BK, Boxer LD, Ransohoff JD, Siprashvili Z, Qu K, Lopez-Pajares V, et al. CALML5 is a ZNF750- and TINCR-induced protein that binds stratifin to regulate epidermal differentiation. Genes Dev. 2015;29(21):2225-30. [Crossref] [PubMed] [PMC]
- Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A. 2015;112(33):10437-42. [Crossref] [PubMed] [PMC]
- Shang W, Wang F, Fan G, Wang H. Key elements for designing and performing a CRISPR/Cas9-based genetic screen. J Genet Genomics. 2017;44(9):439-49. [Crossref] [PubMed]
- Donovan KF, Hegde M, Sullender M, Vaimberg EW, Johannessen CM, Root DE, et al. Creation of novel protein variants with CRISPR/Cas9-mediated mutagenesis: turning a screening by-product into a discovery tool. PLoS One. 2017;12(1):e0170445. [Crossref] [PubMed] [PMC]
- Sharma S, Petsalaki E. Application of CRISPR-Cas9 based genome-wide screening approaches to study cellular signalling mechanisms. Int J Mol Sci. 2018;19(4):933. [Crossref] [PubMed] [PMC]
- Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350(6264):1096-101. [Crossref] [PubMed] [PMC]
- Wang B, Wang M, Zhang W, Xiao T, Chen CH, Wu A, et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat Protoc. 2019;14(3):756-80. [Crossref] [PubMed] [PMC]
- Bodapati S, Daley TP, Lin X, Zou J, Qi LS. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol. 2020;21(1):62. [Crossref] [PubMed] [PMC]
- Hanna RE, Doench JG. Design and analysis of CRISPR-Cas experiments. Nat Biotechnol. 2020;38(7):813-23. [Crossref] [PubMed]
- Hart T, Moffat J. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics. 2016;17:164. [Crossref] [PubMed] [PMC]
- Allen F, Behan F, Khodak A, Iorio F, Yusa K, Garnett M, et al. JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome Res. 2019;29(3):464-71. [Crossref] [PubMed] [PMC]
- Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779-84. [Crossref] [PubMed] [PMC]
- Daley TP, Lin Z, Lin X, Liu Y, Wong WH, Qi LS. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biol. 2018;19(1):159. [Crossref] [PubMed] [PMC]
- Chulanov V, Kostyusheva A, Brezgin S, Ponomareva N, Gegechkori V, Volchkova E, et al. CRISPR screening: molecular tools for studying virus-host interactions. Viruses. 2021;13(11):2258. [Crossref] [PubMed] [PMC]
- Baggen J, Persoons L, Vanstreels E, Jansen S, Van Looveren D, Boeckx B, et al. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat Genet. 2021;53(4):435-44. [Crossref] [PubMed]
- Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet. 2016;53(2):91-7. [Crossref] [PubMed]
- Wisnovsky S, Möckl L, Malaker SA, Pedram K, Hess GT, Riley NM, et al. Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proc Natl Acad Sci U S A. 2021;118(5):e2015024118. [PubMed] [PMC]
- Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci U S A. 2017;114(26):E5207-E15. [Crossref] [PubMed] [PMC]
- Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. J Hum Genet. 2018;63(2):179-86. [Crossref] [PubMed]
- Adelmann CH, Wang T, Sabatini DM, Lander ES. Genome-wide CRISPR/Cas9 screening for identification of cancer genes in cell lines. Methods Mol Biol. 2019;1907:125-36. [Crossref] [PubMed]
- Goodspeed A, Jean A, Costello JC. A whole-genome CRISPR screen identifies a Role of MSH2 in cisplatin-mediated cell death in muscle-invasive bladder cancer. Eur Urol. 2019;75(2):242-50. [Crossref] [PubMed] [PMC]
- Rocha CRR, Reily Rocha A, Molina Silva M, Rodrigues Gomes L, Teatin Latancia M, Andrade Tomaz M, et al. Revealing temozolomide resistance mechanisms via genome-wide CRISPR libraries. Cells. 2020;9(12):2573. [Crossref] [PubMed] [PMC]
- Chow RD, Chen S. Cancer CRISPR screens in vivo. Trends Cancer. 2018;4(5):349-58. [Crossref] [PubMed] [PMC]
- Ungricht R, Guibbal L, Lasbennes MC, Orsini V, Beibel M, Waldt A, et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell. 2022;29(1):160-75.e7. [Crossref] [PubMed]
.: Process List