Günümüzde bir genom mühendisliği aracı olan 'Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)'-Cas9 (CRISPR associated) sistemi, biyolojik bilimlerde yepyeni bir dönem başlatmıştır. CRISPR-Cas9 sistemi; ilk olarak bakteri ve arkealar gibi prokaryotlarda keşfedilen, bakteriyofaj enfeksiyonları, istilacı plazmidler ve yabancı nükleik asitlere karşı hücreyi korumayı amaçlayan RNA ve protein tabanlı bir sistemdir. DNA sekanslarını kolayca ve hassas bir şekilde yerleştirme, çıkarma ve hatta düzenleme yeteneği, tıp, enerji ve hatta çevre çalışmaları gibi geniş bir yelpazedeki biyoteknoloji alanlarında bilim çevrelerinin ilgisini çekmektedir. Tıbbi açıdan bakıldığında bu teknoloji, klinik öncesi ve klinik çalışmalarla çeşitli hastalıkların tedavisinde kullanılabilir. Bilim adamlarının herhangi bir organizmada herhangi bir geni teorik olarak hedeflemesine ve değiştirmesine olanak sağlayan hedeflenebilir nükleazlar, bu tedavilerin yolunu açmaktadır. Bu sistem embriyoloji, kanser, nörolojik hastalıklar ve enfeksiyon hastalıklarında araştırma aşamasında kullanıma girmiştir. Ancak CRISPRCas9 sisteminin güvenliği ile ilgili konular henüz çözülememiştir. Ayrıca, bu sistemin başta insan embriyolarında kullanımı olmak üzere birçok alanda kullanımı üzerine etik kaygılar devam etmektedir. Bu derleme kapsamında CRISPR-Cas9 teknolojisinin dayandığı prensiplerden ve bu teknolojinin güvenliğinden söz edilecek; sistemin kullanımı ile ortaya çıkabilecek etik kaygılar irdelenecektir.
Anahtar Kelimeler: CRISPR-Cas9; etik; güvenlilik; nörodejeneratif hastalıklar; kanser
Today, a genomic engineering tool 'Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)'-Cas9 (CRISPR associated) system has started a new era in biological sciences. CRISPRCas9 system was first discovered in prokaryotes like bacteria and archaea as an RNA and a protein-based system that protects the cell against bacteriophage infections, invading plasmids and foreign nucleic acids. The ability of easy and sensitive replacement of DNA sequences, deletion and most of all arrangement have attracted attention of scientists in a wide range of biotechnology study fields including medicine, energy and environment studies. From a medical perspective, this technology can be used in pre-clinical and clinical studies to treat several diseases. Targetable nucleases that enable the scientist to target and change a gene in an organism can pave the way for these treatments. This system is now being used in researches in embryology, cancer, neurological and infectious diseases. However, problems have not solved for the safety issues of CRISPR-Cas9 system. In addition, ethical concerns are still continuing for the use of this system in several fields, particularly in human embryos. In this review we will mention the main principles and safety issues of CRISPR-Cas9 technology as well as the ethical concerns and toxicological problems.
Keywords: CRISPR-Cas9; ethics; safety; neurodegenerative diseases; cancer
- Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213): 1258096. [Crossref] [PubMed]
- Chen S, Yu X, Guo D. CRISPR-cas targeting of host genes as an antiviral strategy. Viruses. 2018;10(1).pii: E40. [Crossref] [PubMed] [PMC]
- Cao J, Xiao Q, Yan Q. The multiplexed CRISPR targeting platforms. Drug Discov Today Technol. 2018;28:53-61. [Crossref] [PubMed] [PMC]
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12. [Crossref] [PubMed]
- Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18(5):807-15. [Crossref] [PubMed] [PMC]
- Segal DJ, Meckler JF. Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet. 2013;14:135-58. [Crossref] [PubMed]
- Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-308. [Crossref] [PubMed] [PMC]
- Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-33. [Crossref] [PubMed] [PMC]
- Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(Pt 8):2551-61. [Crossref] [PubMed]
- Mojica FJ, Díez-Villase-or C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174-82. [Crossref] [PubMed]
- Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(Pt 3):653-63. [Crossref] [PubMed]
- Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-70. [Crossref] [PubMed]
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. [Crossref] [PubMed] [PMC]
- Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23. [Crossref] [PubMed] [PMC]
- Walsh RM, Hochedlinger K. A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci USA. 2013;110(39):15514-5. [Crossref] [PubMed] [PMC]
- Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell. 2015;163(3):759-71. [Crossref] [PubMed] [PMC]
- Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84-8. [Crossref] [PubMed] [PMC]
- Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-5. [Crossref] [PubMed] [PMC]
- O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014;516(7530):263-6. [Crossref] [PubMed] [PMC]
- Taştan C, Sakartepe E. T101 CRISPR Genom Modifikasyonları. AddGene CRISPR 101. Taştan C, çeviri editörü. 2018.
- Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR-Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363-72. [Crossref] [PubMed] [PMC]
- Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413-9. [Crossref] [PubMed]
- Winblad N, Lanner F. Biotechnology: at the heart of gene edits in human embryos. Nature. 2017;548(7668):398-400. [Crossref] [PubMed]
- Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017;550(7674):67-73. [Crossref] [PubMed] [PMC]
- Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet. 2016;33(5):581-8. [Crossref] [PubMed] [PMC]
- Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, et al. CRISPR-Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics. 2017;292(3):525-33. [Crossref] [PubMed]
- Mahmoudian-sani MR, Farnoosh G, Mahdavinezhad A, Saidijam M. CRISPR genome editing and its medical applications. Biotechnol Biotechnol Equip. 2018;32(2):286-92. [Crossref]
- Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132-41. [Crossref] [PubMed] [PMC]
- Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-32. [Crossref] [PubMed] [PMC]
- Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014;32(7):670-6. [Crossref] [PubMed] [PMC]
- Guernet A, Grumolato L. CRISPR-Cas9 editing of the genome for cancer modeling. Methods. 2017;121-122:130-7. [Crossref] [PubMed]
- Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380-4. [Crossref] [PubMed] [PMC]
- Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546-58. [Crossref] [PubMed] [PMC]
- Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256-62. [Crossref] [PubMed]
- Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43-7. [Crossref] [PubMed]
- Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, et al. Somatic CRISPR-Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391. [Crossref] [PubMed] [PMC]
- You L, Jianxin X, Tao D, Xiaojuan Z, Kun Y, Meijuan H, et al. A phase I trial of PD-1 deficient engineered T cells with CRISPR-Cas9 in patients with advanced non-small cell lung cancer. J Clin Oncol. 2018;36(15 Suppl):3050. [Crossref]
- Mintz RL, Gao MA, Lo K, Lao YH, Li M, Leong KW. CRISPR technology for breast cancer: diagnostics, modeling, and therapy. Adv Biosys. 2018;2(11):1800132. [Crossref]
- Yan S, Tu Z, Li S, Li XJ. Use of CRISPR-Cas9 to model brain diseases. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:488-92. [Crossref] [PubMed] [PMC]
- Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci. 2016;17(1):36-44. [Crossref] [PubMed] [PMC]
- Walter JM, Chandran SS, Horwitz AA. CRISPR-Cas-Assisted Multiplexing (CAM): simple same-day multi-locus engineering in yeast. J Cell Physiol. 2016;231(12):2563-9. [Crossref] [PubMed]
- Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in drosophila. Genetics. 2013;195(1):289-91. [Crossref] [PubMed] [PMC]
- Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis. 2013;51(12):835-43. [Crossref] [PubMed] [PMC]
- Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):681-3. [Crossref] [PubMed]
- Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910-8. [Crossref] [PubMed] [PMC]
- Song Y, Yuan L, Wang Y, Chen M, Deng J, Lv Q, et al. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cell Mol Life Sci. 2016;73(15):2959-68. [Crossref] [PubMed]
- Giau VV, Lee H, Shim KH, Bagyinszky E, An SSA. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer's disease. Clin Interv Aging. 2018;13:221-33. [Crossref] [PubMed] [PMC]
- Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208-11. [Crossref] [PubMed] [PMC]
- Shin JW, Lee JM. The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Ther Adv Neurol Disord. 2018;11:1756285617741837. [Crossref] [PubMed] [PMC]
- Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al. Seamless modification of wildtype induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA. 2014;111(26):9591-6. [Crossref] [PubMed] [PMC]
- Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551-3. [Crossref] [PubMed] [PMC]
- Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400-3. [Crossref] [PubMed] [PMC]
- Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403-7. [Crossref] [PubMed] [PMC]
- Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407-11. [Crossref] [PubMed] [PMC]
- Lee JM, Gillis T, Mysore JS, Ramos EM, Myers RH, Hayden MR, et al. Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region. Am J Hum Genet. 2012;90(3):434-44. [Crossref] [PubMed] [PMC]
- Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016;25(20):4566-76. [Crossref] [PubMed] [PMC]
- Erkekoğlu P. [ Entry inhibitors for the treatment of human immunodeficiency virus-1 (HIV-1) and their toxic effects]. FABAD J Pharm Sci. 2018;43(1):41-58.
- Yuen KS, Chan CP, Wong NH, Ho CH, Ho TH, Lei T, et al. CRISPR-Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol. 2015;96(Pt 3):626-36. [Crossref] [PubMed]
- Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, et al. The CRISPR-Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology. 2015;12:22. [Crossref] [PubMed] [PMC]
- Buchthal J, Evans SW, Lunshof J, Telford SR 3rd, Esvelt KM. Mice against ticks: an experimental communityguided effort to prevent tick-borne disease by altering the shared environment. Philos Trans R Soc Lond B Biol Sci. 2019;374(1772):20180105. [Crossref] [PubMed] [PMC]
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States. CDC; 2013. p.112. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
- Greene AC. CRISPR-based antibacterials: transforming bacterial defense into offense. Trends Biotechnol. 2018;36(2):127-30. [Crossref] [PubMed]
- Umeyama T, Hayashi Y, Shimosaka H, Inukai T, Yamagoe S, Takatsuka S, et al. CRISPR-Cas9 genome editing to demonstrate the contribution of Cyp51A Gly138Ser to azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2018;62(9).pii:e00894-18. [Crossref] [PubMed] [PMC]
- Shabbir MA, Wu Q, Shabbir MZ, Sajid A, Ahmed S, Sattar A, et al. The CRISPR-cas system promotes antimicrobial resistance in Campylobacter jejuni. Future Microbiol. 2018;13:1757-74. [Crossref] [PubMed]
- Brokowski C, Adli M. CRISPR ethics: moral considerations for applications of a powerful tool. J Mol Biol. 2019;431(1):88-101. [Crossref] [PubMed] [PMC]
- Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003;3(7):477-88. [Crossref] [PubMed]
- Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015;33(2):175-8. [Crossref] [PubMed]
- Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, et al. Enhanced specificity and efficiency of the CRISPR-Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 2014;9(3):1151-62. [Crossref] [PubMed] [PMC]
- Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR-Cas9 and piggyBac. Genome Res. 2014;24(9):1526-33. [Crossref] [PubMed] [PMC]
- Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 2015;11(3):198-200. [Crossref] [PubMed] [PMC]
- Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78. [Crossref] [PubMed] [PMC]
- Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, et al. PiggyBac transposase tools for genome engineering. Proc Natl Acad Sci USA. 2013;110(25):E2279-87. [Crossref] [PubMed] [PMC]
- Lockyer EJ. The potential of CRISPR-Cas9 for treating genetic disorders. Bioscience Horizons: The International Journal of Student Research. 2016;9:hzw012. https://academic.oup.com/biohorizons/article/doi/10.1093/biohorizons/hzw012/2562795
- Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36-8. [Crossref] [PubMed] [PMC]
- National Academies of Sciences, Engineering, and Medicine (NASEM). Human Genome Editing: Science, Ethics, and Governance. The National Academies Press. Washington, DC, 2017.
.: Process List