Viruses invade cells to reproduce, and they require an iron-filled cell for efficient reproduction. Together with other viruses, the coronavirus disease-2019 (COVID-19) virus can alter the expression of proteins involved in iron homeostasis. For example, in COVID19 patients, an increase in pro-inflammatory cytokines such as interleukin-6 may stimulate the synthesis of hepcidin, the regulatory hormone of iron metabolism, thereby suppressing ferroportin-mediated cellular iron export. Increased serum levels of ferritin in COVID19 virus infection is associated with a poor prognosis and may be partly due to the virus itself. Some viruses selectively infect iron acceptor cells (e.g. macrophages) by binding to transferrin receptor 1during cell entry. Moreover, human airway secretions in the major route of entry of COVID-19 include transferrin and lactoferrin, and this glycoproteins can bind iron and maintain a chemically inert form. Understanding how iron metabolism and viral infection interact in the COVID-19 outbreak may suggest new ways to control the disease.
Keywords: SARS-CoV-2; COVID-19; iron; ferritin; hepcidin
Virüsler, çoğalmak için hücreleri istila eder ve verimli üreme için demir dolu bir hücreye ihtiyaç duyarlar. Diğer virüslerle birlikte koronavirüs hastalığı-2019 [coronavirus disease-2019 (COVID-19)] virüsü, demir homeostazına dâhil olan proteinlerin ekspresyonunu değiştirebilir. Örneğin COVID-19 hastalarında, interlökin-6 gibi proinflamatuar sitokinlerdeki bir artış, demir metabolizmasının düzenleyici hormonu olan hepsidin sentezini uyarabilir ve böylece ferroportin aracılı hücresel demir dışa aktarımını baskılayabilir. COVID-19 virüs enfeksiyonunda artan serum ferritin seviyeleri kötü prognozla ilişkilidir ve kısmen virüsün kendisinden kaynaklanıyor olabilir. Bazı virüsler, hücre girişi sırasında transferin reseptörü 1'e bağlanarak seçici olarak demir alıcı hücreleri (örneğin makrofajlar) enfekte eder. Dahası, COVID-19'un ana giriş yolundaki insan hava yolu salgıları arasında transferrin ve laktoferrin bulunur ve bu glikoproteinler demiri bağlayabilir ve kimyasal olarak inert bir formu koruyabilir. COVID-19 salgınında demir metabolizmasının ve viral enfeksiyonun nasıl etkileşime girdiğini anlamak, hastalığı kontrol etmenin yeni yollarını önerebilir.
Anahtar Kelimeler: SARS-CoV-2; COVID-19; demir; ferritin; hepsidin
- Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21. [Crossref] [PubMed] [PMC]
- Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. J Med Virol. 2020;92(6):548-51. [Crossref] [PubMed] [PMC]
- Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. [Crossref] [PubMed] [PMC]
- Yılmaz N, Eren E, Öz C. COVID-19 and ozone. Cyprus J Med Sci. 2020;5(4):365-72. [Crossref]
- Garrick MD, Ghio AJ. Iron chelation may harm patients with COVID-19. Eur J Clin Pharmacol. 2021;77(2):265-6. Erratum in: Eur J Clin Pharmacol. 2021 Feb;77(2):265-266. [Crossref] [PubMed] [PMC]
- Lin Z, Long F, Yang Y, Chen X, Xu L, Yang M. Serum ferritin as an independent risk factor for severity in COVID-19 patients. J Infect. 2020;81(4):647-79. [Crossref] [PubMed] [PMC]
- Kappert K, Jahić A, Tauber R. Assessment of serum ferritin as a biomarker in COVID-19: bystander or participant? Insights by comparison with other infectious and non-infectious diseases. Biomarkers. 2020;25(8):616-25. [Crossref] [PubMed]
- Altschul DJ, Esenwa C, Haranhalli N, Unda SR, de La Garza Ramos R, Dardick J, et al. Predictors of mortality for patients with COVID-19 and large vessel occlusion. Interv Neuroradiol. 2020;26(5):623-8. [Crossref] [PubMed] [PMC]
- Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763-73. [Crossref] [PubMed] [PMC]
- Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. [Crossref] [PubMed] [PMC]
- Shenoy S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm Res. 2020;69(11):1077-85. [Crossref] [PubMed] [PMC]
- Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. [Crossref] [PubMed] [PMC]
- Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL. A case for the ancient origin of coronaviruses. J Virol. 2013;87(12):7039-45. [Crossref] [PubMed] [PMC]
- Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev. 2020;33(4):e00028-20. [Crossref] [PubMed] [PMC]
- Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020;39(3):198-216. [Crossref] [PubMed] [PMC]
- Wächtershäuser G. Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol. 1992;58(2):85-201. [Crossref] [PubMed]
- Drakesmith H, Prentice A. Viral infection and iron metabolism. Nat Rev Microbiol. 2008;6(7):541-52. [Crossref] [PubMed]
- Chifman J, Laubenbacher R, Torti SV. A systems biology approach to iron metabolism. Adv Exp Med Biol. 2014;844:201-25. [Crossref] [PubMed] [PMC]
- Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116(9):1574-84. [Crossref] [PubMed]
- Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta. 2010;1800(8):783-92. [Crossref] [PubMed]
- Zhang Q, Huang X. Induction of interleukin-6 by coal containing bioavailable iron is through both hydroxyl radical and ferryl species. J Biosci. 2003;28(1):95-100. [Crossref] [PubMed]
- Innes AJ, Cook LB, Marks S, Bataillard E, Crossette-Thambiah C, Sivasubramaniam G, et al. Ruxolitinib for tocilizumab-refractory severe COVID-19 infection. Br J Haematol. 2020;190(4):e198-e200. [Crossref] [PubMed] [PMC]
- Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020;92(7):814-8. [Crossref] [PubMed] [PMC]
- Li Y, Zhou Y, Zhang D, Wu WY, Kang X, Wu Q, et al. Hypobaric hypoxia regulates iron metabolism in rats. J Cell Biochem. 2019;120(8):14076-87. [Crossref] [PubMed]
- Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, et al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res. 2020;68(4):213-24. [Crossref] [PubMed] [PMC]
- Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res. 2020;158:104904. [Crossref] [PubMed] [PMC]
- Abo-Zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 2020;153:105465. [Crossref] [PubMed] [PMC]
- Hadadi A, Mortezazadeh M, Kolahdouzan K, Alavian G. Does recombinant human erythropoietin administration in critically ill COVID-19 patients have miraculous therapeutic effects? J Med Virol. 2020;92(7):915-8. [Crossref] [PubMed] [PMC]
- Sukhomlin T. Could an acute respiratory distress syndrome in COVID-19 infected patients be calmed down simply by iron withdrawal from lung tissues? J Med Virol. 2021;93(2):577-8. [Crossref] [PubMed]
- Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102. [Crossref] [PubMed] [PMC]
- Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, et al. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab. 2019;1(5):519-31. [Crossref] [PubMed] [PMC]
- Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: A retrospective study. Open Forum Infect Dis. 2020;7(7):ofaa250. [Crossref] [PubMed] [PMC]
- Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108. [Crossref] [PubMed]
- Wagener FADTG, Pickkers P, Peterson SJ, Immenschuh S, Abraham NG. Targeting the heme-heme oxygenase system to prevent severe complications following COVID-19 infections. Antioxidants (Basel). 2020;9(6):540. [Crossref] [PubMed] [PMC]
- Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999;1411(2-3):290-309. [Crossref] [PubMed]
- Gan ZS, Wang QQ, Li JH, Wang XL, Wang YZ, Du HH. Iron reduces M1 macrophage polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1. Mediators Inflamm. 2017;2017:8570818. [Crossref] [PubMed] [PMC]
- Arber N, Moshkowitz M, Konikoff F, Halpern Z, Hallak A, Santo M, et al. Elevated serum iron predicts poor response to interferon treatment in patients with chronic HCV infection. Dig Dis Sci. 1995;40(11):2431-3. [Crossref] [PubMed]
- Kanamori Y, Murakami M, Sugiyama M, Hashimoto O, Matsui T, Funaba M. Hepcidin and IL-1β. Vitam Horm. 2019;110:143-56. [Crossref] [PubMed]
- Agarwal AK, Yee J. Hepcidin. Adv Chronic Kidney Dis. 2019;26(4):298-305. [Crossref] [PubMed]
- Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;127(23):2809-13. [Crossref] [PubMed] [PMC]
- Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator. Biosci Rep. 2015;35(3):e00192. [Crossref] [PubMed] [PMC]
- Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COVID-19. Rev Panam Salud Publica. 2020;44:e72. [Crossref] [PubMed] [PMC]
- Velavan TP, Meyer CG. Mild versus severe COVID-19: Laboratory markers. Int J Infect Dis. 2020;95:304-7. [Crossref] [PubMed] [PMC]
- Di Paola L, Hadi-Alijanvand H, Song X, Hu G, Giuliani A. The discovery of a putative allosteric Site in the SARS-CoV-2 spike protein using an ıntegrated structural/dynamic approach. J Proteome Res. 2020;19(11):4576-86. [Crossref] [PubMed] [PMC]
- Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950-73. [Crossref] [PubMed] [PMC]
- Zhang V, Ganz T, Nemeth E, Kim A. Iron overload causes a mild and transient increase in acute lung injury. Physiol Rep. 2020;8(12):e14470. [Crossref] [PubMed] [PMC]
- Patel KP, Patel PA, Vunnam RR, Hewlett AT, Jain R, Jing R, et al. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J Clin Virol. 2020;128:104386. [Crossref] [PubMed] [PMC]
- Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582. [Crossref] [PubMed] [PMC]
- Auguet T, Aragonès G, Berlanga A, Martínez S, Sabench F, Binetti J, et al. Hepcidin in morbidly obese women with non-alcoholic fatty liver disease. PLoS One. 2017;12(10):e0187065. [Crossref] [PubMed] [PMC]
- Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics. 2017;9(10):1367-75. [Crossref] [PubMed]
- Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J Clin Med. 2020;9(8):2429. [Crossref] [PubMed] [PMC]
- Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:197-213. [Crossref] [PubMed]
- Gao G, Li J, Zhang Y, Chang YZ. Cellular Iron Metabolism and Regulation. Adv Exp Med Biol. 2019;1173:21-32. [Crossref] [PubMed]
- Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19(7):102568. [Crossref] [PubMed] [PMC]
- Neves J, Haider T, Gassmann M, Muckenthaler MU. Iron Homeostasis in the Lungs-A Balance between Health and Disease. Pharmaceuticals (Basel). 2019;12(1):5. [Crossref] [PubMed] [PMC]
- Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, Penrice-Randal R, et al. Tissue-Specific Immunopathology in Fatal COVID-19. Am J Respir Crit Care Med. 2021;203(2):192-201. [Crossref] [PubMed] [PMC]
- Ghio AJ, Wang X, Silbajoris R, Garrick MD, Piantadosi CA, Yang F. DMT1 expression is increased in the lungs of hypotransferrinemic mice. Am J Physiol Lung Cell Mol Physiol. 2003;284(6):L938-44. [Crossref] [PubMed]
- Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016;44(3):492-504. [Crossref] [PubMed] [PMC]
- Ganz T. Iron and infection. Int J Hematol. 2018;107(1):7-15. Erratum in: Int J Hematol. 2017 Dec 2. [Crossref] [PubMed]
- Bolondi G, Russo E, Gamberini E, Circelli A, Meca MCC, Brogi E, et al. Iron metabolism and lymphocyte characterisation during Covid-19 infection in ICU patients: an observational cohort study. World J Emerg Surg. 2020;15(1):41. [Crossref] [PubMed] [PMC]
- Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62. Erratum in: Nat Rev Immunol. 2020. [Crossref] [PubMed] [PMC]
- Woodward JE, Bayer AL, Chavin KD, Boleza KA, Baliga P. Anti-transferrin receptor monoclonal antibody: a novel immunosuppressant. Transplantation. 1998;65(1):6-9. [Crossref] [PubMed]
- McLaughlin KM, Bechtel M, Bojkova D, Münch C, Ciesek S, Wass MN, Michaelis M, Cinatl J Jr. COVID-19-Related Coagulopathy-Is Transferrin a Missing Link? Diagnostics (Basel). 2020;10(8):539. [Crossref] [PubMed] [PMC]
- Chen ST, Ni YH, Li CC, Liu SH. Hepcidin correlates with interleukin-1β and interleukin-6 but not iron deficiency in children with Helicobacter pylori infection. Pediatr Neonatol. 2018;59(6):611-7. [Crossref] [PubMed]
- Sabelli M, Montosi G, Garuti C, Caleffi A, Oliveto S, Biffo S, et al. Human macrophage ferroportin biology and the basis for the ferroportin disease. Hepatology. 2017;65(5):1512-25. [Crossref] [PubMed] [PMC]
- Hirayama M, Kohgo Y, Kondo H, Shintani N, Fujikawa K, Sasaki K, et al. Regulation of iron metabolism in HepG2 cells: a possible role for cytokines in the hepatic deposition of iron. Hepatology. 1993;18(4):874-80. [Crossref] [PubMed]
- Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39(7):2085-94. [Crossref] [PubMed] [PMC]
- Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382(20):e60. [Crossref] [PubMed] [PMC]
- Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102. [Crossref] [PubMed] [PMC]
- Root-Bernstein R. Age and Location in Severity of COVID-19 Pathology: Do Lactoferrin and Pneumococcal Vaccination Explain Low Infant Mortality and Regional Differences? Bioessays. 2020;42(11):e2000076. [Crossref] [PubMed]
- Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biol Direct. 2020;15(1):19. [Crossref] [PubMed] [PMC]
- Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, Polimeni A, et al. Antiviral properties of lactoferrin--a natural immunity molecule. Molecules. 2011;16(8):6992-7018. [Crossref] [PubMed] [PMC]
- Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, et al. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 2011;6(8):e23710. [Crossref] [PubMed] [PMC]
- Peroni DG, Fanos V. Lactoferrin is an important factor when breastfeeding and COVID-19 are considered. Acta Paediatr. 2020;109(10):2139-40. [Crossref] [PubMed] [PMC]
- Powell AE, Zhang K, Sanyal M, Tang S, Weidenbacher PA, Li S, et al. A Single Immunization with Spike-Functionalized Ferritin Vaccines Elicits Neutralizing Antibody Responses against SARS-CoV-2 in Mice. ACS Cent Sci. 2021;7(1):183-99. [Crossref] [PubMed] [PMC]
.: Process List