Neurodegeneration caused by neurotoxicity is a condition influenced by many factors such as increased reactive oxygen species, protein misfolding, and ubiquitin-proteasome pathway dysfunction. The brain-gut axis is one of the primary systems affected by neurodegeneration. This axis is a bidirectional system consisting of neurological, endocrine, and immunological elements. Disruption of microbial balance in the gut leads to poor inflammation, increased oxidative stress, disruption of energy homeostasis, and cellular degeneration. Probiotics, which are important for maintaining this balance, are beneficial bacteria that, when ingested in sufficient quantities, positively affect host health and play an active role in maintaining microbial homeostasis in the gut. Another substance that impacts neurodegeneration is vitamin D. It is clearly stated in the literature that vitamin D supplementation, a fat-soluble micronutrient that falls into the steroid hormone category, or adequate sun exposure positively reduces the risk of developing/progressing neurodegenerative disorders. Vitamin D achieves this effect by inhibiting the synthesis of nitric oxide synthase and increasing the stimulation of gamma-glutamyl transpeptidase. Moreover, vitamin D exerts this beneficial effect by binding to vitamin D receptors in the intestine. It is known that probiotics and vitamin D have separate neuroprotective effects against neurotoxicity, but it is not well enough known that their beneficial effects are enhanced when probiotics and vitamin D are taken together. The aim of this study is to show that the beneficial effects of probiotics and vitamin D against neurotoxicity are enhanced when they are taken together.
Keywords: Probiotics; vitamin D; microbiota; brain-gut axis; neurotoxicity syndromes
Nörotoksisitenin neden olduğu nörodejenerasyon, reaktif oksijen türlerinin artması, proteinlerin yanlış katlanması ve ubikitin-proteozom yolağının disfonksiyonu gibi birçok faktörden etkilenen bir durumdur. Nörojenerasyondan etkilenen sistemlerin başında beyin-bağırsak aksı gelir. Bu aks nörolojik, endokrin ve immünolojik unsurlardan oluşan çift yönlü bir sistemdir. Bağırsağın mikrobiyal dengesinin bozulması düşük dereceli inflamasyona, oksidatif streste artışa, enerji homeostazının bozulmasına ve hücresel dejenerasyonun artmasına neden olur. Bu dengenin korunmasında önemli olan probiyotikler, yeterli miktarda alındığında konakçı sağlığını olumlu yönde etkileyen ve bağırsaklarda mikrobiyal homeostazın sağlanmasında aktif rol oynayan yararlı bakterilerdir. Nörodejenerasyon üzerine etkisi olduğu bilinen bir diğer madde D vitaminidir. Steroid hormon kategorisine giren ve yağda çözünen bir mikro besin olan D vitamini takviyesinin veya yeterli güneş ışığına maruz kalmanın, nörodejeneratif bozuklukların gelişme/ilerleme riskini olumlu yönde azalttığı literatürde açıkça belirtilmektedir. D vitamini bu etkisini nitrik oksit sentazın sentezini inhibe ederek ve gama-glutamil transpeptidazın stimülasyonunu artırarak gerçekleştirmektedir. Ayrıca D vitamini bu yararlı etkisini bağırsaktaki D vitamini reseptörlerine bağlanarak gösterir. Probiyotikler ve D vitamininin nörotoksisiteye karşı ayrı ayrı nöroprotektif etkisi olduğu bilinmekle birlikte, probiyotikler ve D vitamini birlikte alındığında bu protektif etkinin arttığı yeterince bilinmemektedir. Bu çalışmanın amacı, nörotoksisiteye karşı probiyotiklerin ve D vitamininin birlikte kullanıldığında yararlı etkilerinin artığını ortaya koymaktır.
Anahtar Kelimeler: Probiyotikler; D vitamini; mikrobiyota; beyin-bağırsak aksı; nörotoksisite sendromları
- Lopez-Suarez L, Awabdh SA, Coumoul X, Chauvet C. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology. 2022;92:131-55. [Crossref] [PubMed]
- Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167-78. [Crossref] [PubMed]
- Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330-8. [Crossref] [PubMed] [PMC]
- Tseng CY. Effects of atypical neurotoxins on the developing fetal brain. In: Erkekoglu P, Ogawa T, eds. Medical Toxicology. 1st ed. United Kingdom: IntechOpen; 2021. [Link]
- Abdel-Aal RA, Assi AA, Kostandy BB. Memantine prevents aluminum-induced cognitive deficit in rats. Behav Brain Res. 2011;225(1):31-8. [Crossref] [PubMed]
- Eiser AR. Why does Finland have the highest dementia mortality rate? Environmental factors may be generalizable. Brain Res. 2017;1671:14-7. [Crossref] [PubMed]
- Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L. Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci. 2012;322(1-2):187-91. [Crossref] [PubMed]
- Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci. 2013;7:190. [Crossref] [PubMed] [PMC]
- Kim YH, Sol IS, Yoon SH, Kim MJ, Kim KW, Sohn MH, et al. Association of extended nitric oxide parameters with bronchial hyperresponsiveness and bronchodilator response in children with asthma. J Breath Res. 2017;11(4):046003. [Crossref] [PubMed]
- Kumar P, Kalonia H, Kumar A. Cyclosporine A attenuates 3-nitropropionic acid-induced Huntington-like symptoms in rats: possible nitric oxide mechanism. Int J Toxicol. 2010;29(3):318-25. [Crossref] [PubMed]
- Nasyrova RF, Ivashchenko DV, Ivanov MV, Neznanov NG. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol. 2015;6:139. [Crossref] [PubMed] [PMC]
- Rönnbäck C, Hansson E. The importance and control of low-grade inflammation due to damage of cellular barrier systems that may lead to systemic inflammation. Front Neurol. 2019;10:533. [Crossref] [PubMed] [PMC]
- Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-Based, Central Nervous System (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50-68. [Crossref] [PubMed] [PMC]
- Zhu X, Liu X, Wei F, Wang F, Merzenich MM, Schreiner CE, et al. Perceptual training restores impaired cortical temporal processing due to lead exposure. Cereb Cortex. 2016;26(1):334-45. [Crossref] [PubMed] [PMC]
- Hassel B. Tetanus: pathophysiology, treatment, and the possibility of using botulinum toxin against tetanus-induced rigidity and spasms. Toxins (Basel). 2013;5(1):73-83. [Crossref] [PubMed] [PMC]
- Chulanetra M, Bangphoomi K, Sookrung N, Thanongsaksrikul J, Srimanote P, Sakolvarvaree Y, et al. Human ScFv that block sodium ion channel activity of tetrodotoxin. Toxicon. 2012;59(2):272-82. [Crossref] [PubMed]
- Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VL, et al. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut. 2014;63(8):1313-24. [Crossref] [PubMed] [PMC]
- Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol. 2016;415(2):314-25. [Crossref] [PubMed]
- Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 2014;10(12):2099-108. [Crossref] [PubMed] [PMC]
- Roux A, Jackson SN, Muller L, Barbacci D, O'Rourke J, Thanos PK, et al. Ethanol induced brain lipid changes in mice assessed by mass spectrometry. ACS Chem Neurosci. 2016;7(8):1148-56. [Crossref] [PubMed] [PMC]
- Scott KP, Antoine JM, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis. 2015;26:25877. [Crossref] [PubMed] [PMC]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos ML, Bories G, et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018;16(3):e05206. [Crossref] [PubMed] [PMC]
- Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The use of probiotic therapy in metabolic and neurological diseases. Front Nutr. 2022;9:887019. [Crossref] [PubMed] [PMC]
- Michael DR, Davies TS, Loxley KE, Allen MD, Good MA, Hughes TR, et al. In vitro neuroprotective activities of two distinct probiotic consortia. Benef Microbes. 2019;10(4):437-47. [Crossref] [PubMed]
- Cheng B, Lu H, Bai B, Chen J. d-β-Hydroxybutyrate inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress. Neurochem Int. 2013;62(5):620-5. [Crossref] [PubMed]
- Xie HR, Hu LS, Li GY. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med J (Engl). 2010;123(8):1086-92. [PubMed]
- Cheon MJ, Lim SM, Lee NK, Paik HD. Probiotic Properties and Neuroprotective Effects of Lactobacillus buchneri KU200793 Isolated from Korean Fermented Foods. Int J Mol Sci. 2020;21(4):1227. [Crossref] [PubMed] [PMC]
- Cheon MJ, Lee NK, Paik HD. Neuroprotective effects of heat-killed lactobacillus plantarum 200655 isolated from kimchi against oxidative stress. Probiotics Antimicrob Proteins. 2021;13(3):788-95. [Crossref] [PubMed]
- Park J, Lee J, Yeom Z, Heo D, Lim YH. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep. 2017;7(1):14520. [Crossref] [PubMed] [PMC]
- Distrutti E, O'Reilly JA, McDonald C, Cipriani S, Renga B, Lynch MA, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One. 2014;9(9):e106503. [Crossref] [PubMed] [PMC]
- Nicola S, Amoruso A, Deidda F, Pane M, Allesina S, Mogna L, et al. Searching for the Perfect Homeostasis: Five Strains of Bifidobacterium longum From Centenarians Have a Similar Behavior in the Production of Cytokines. J Clin Gastroenterol. 2016 Nov/Dec;50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S126-S130. [Crossref] [PubMed]
- Nowak A, Paliwoda A, Błasiak J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr. 2019;59(21):3456-67. [Crossref] [PubMed]
- Castelli V, d'Angelo M, Lombardi F, Alfonsetti M, Antonosante A, Catanesi M, et al. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging (Albany NY). 2020;12(5):4641-49. [Crossref] [PubMed] [PMC]
- Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-29. [Crossref] [PubMed] [PMC]
- Mokhtari Z, Hekmatdoost A, Nourian M. Antioxidant efficacy of vitamin D. J Parathyr Dis. 2016;5(1):11-6. [Link]
- van Schoor N, Lips P. Global overview of vitamin D status. Endocrinol Metab Clin North Am. 2017;46(4):845-70. [Crossref] [PubMed]
- Khazai N, Judd SE, Tangpricha V. Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep. 2008;10(2):110-7. [Crossref] [PubMed] [PMC]
- Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet. 2014;383(9912):146-55. [Crossref] [PubMed]
- Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol. 2017;7:697. [Crossref] [PubMed] [PMC]
- Jang W, Kim HJ, Li H, Jo KD, Lee MK, Song SH, et al. 1,25-Dyhydroxyvitamin D₃ attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun. 2014;451(1):142-7. [Crossref] [PubMed]
- Chen L, Zhou K, Chen H, Li S, Lin D, Zhou D. Calcitriol promotes survival of experimental random pattern flap via activation of autophagy. Am J Transl Res. 2017;9(8):3642-53. [PubMed] [PMC]
- Smith MP, Fletcher-Turner A, Yurek DM, Cass WA. Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res. 2006;31(4):533-9. [Crossref] [PubMed]
- Wang JY, Wu JN, Cherng TL, Hoffer BJ, Chen HH, Borlongan CV, et al. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res. 2001;904(1):67-75. [Crossref] [PubMed]
- Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr. 2016;55(4):1479-89. [Crossref] [PubMed] [PMC]
- Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci. 2016;1372(1):53-64. [Crossref] [PubMed]
- Ly NP, Litonjua A, Gold DR, Celedón JC. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immunol. 2011;127(5):1087-94; quiz 1095-6. [Crossref] [PubMed] [PMC]
- Shah C, Mokashe N, Mishra V. Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products. J Food Sci Technol. 2016;53(4):1984-92. [Crossref] [PubMed] [PMC]
- Battistini C, Nassani N, Saad SM, Sun J. Probiotics, vitamin D, and vitamin D receptor in health and disease. In: de Albuquerque MAC, de LeBlanc AM, LeBlanc JG, Bedani R, eds. Lactic Acid Bacteria A Functional Approach. 1st ed. Boca Raton: CRC Press; 2020. p.93-105. [Crossref]
- Ogbu D, Xia E, Sun J. Gut instincts: vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biol. 2020;10(7):200063. [Crossref] [PubMed] [PMC]
- Ghaderi A, Banafshe HR, Mirhosseini N, Moradi M, Karimi MA, Mehrzad F, et al. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry. 2019;19(1):77. [Crossref] [PubMed] [PMC]
- Raygan F, Ostadmohammadi V, Bahmani F, Asemi Z. The effects of vitamin D and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):50-5. [Crossref] [PubMed]
- Kılınç GE. Obez ratlarda probiyotik ile D vitamini takviyesinin bağırsak mikrobiyotası ve D vitamini reseptör kompozisyonu üzerine etkilerinin deneysel olarak araştırılması [Yüksek lisans tezi]. Samsun: Ondokuz Mayıs Üniversitesi; 2018. Erişim tarihi: 18.07.2023. Erişim linki: [Link]
- Jamilian M, Amirani E, Asemi Z. The effects of vitamin D and probiotic co-supplementation on glucose homeostasis, inflammation, oxidative stress and pregnancy outcomes in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38(5):2098-105. [Crossref] [PubMed]
- Miraglia Del Giudice M, Maiello N, Allegorico A, Iavarazzo L, Capasso M, Capristo C, et al. Lactobacillus reuteri DSM 17938 plus vitamin D3 as ancillary treatment in allergic children with asthma. Ann Allergy Asthma Immunol. 2016;117(6):710-2. [Crossref] [PubMed]
- Ostadmohammadi V, Jamilian M, Bahmani F, Asemi Z. Vitamin D and probiotic co-supplementation affects mental health, hormonal, inflammatory and oxidative stress parameters in women with polycystic ovary syndrome. J Ovarian Res. 2019;12(1):5. [Crossref] [PubMed] [PMC]
- Tazzyman S, Richards N, Trueman AR, Evans AL, Grant VA, Garaiova I, et al. Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: outcomes from a pilot trial. BMJ Open Gastroenterol. 2015;2(1):e000052. [Crossref] [PubMed] [PMC]
.: Process List