Cilt yaşlanması hem kadın hem de erkekler için modern zamanların önemli sorunları arasında yer almaktadır. Yaşlanma yapısal ve moleküler bozulma ile beraber, derinin fonksiyon ve görüntüsünü etkileyen yavaş ve progresif seyreden karmaşık bir süreçtir. Bu süreç çeşitli iç ve dış etkenler ile şekillenmektedir. Temel olarak cilt yaşlanması; zamana bağlı olarak gelişen kronolojik yaşlanma (intrensek yaşlanma) ve başta güneşin zararlı ışınlarına maruziyet olmak üzere; sigara ve aşırı alkol kullanımı, yetersiz beslenme gibi olumsuz çevresel faktörlere bağlı olarak gelişen ekstrensek yaşlanma olmak üzere iki farklı şekilde gerçekleşmektedir. Deride görülen değişikliklerin %90'ından fazlası kronik güneş hasarının yol açtığı çevresel etkilere bağlıdır. Bu nedenle ekstrensek yaşlanma, aynı zamanda fotoyaşlanma olarak anılmaktadır. Yaşlanmanın önemli nedenlerinden olan matriks metalloproteinaz (MMP)lar ise ekstraselüler matriksteki kollajen ve diğer proteinlerin parçalanmasından sorumlu ana enzim grubudur. Kollajen, bağ dokusunun temel yapısal bileşenidir ve bozulması yaşlı görünmenin temel nedenlerindendir. MMP ailesi kolajenazlar, jelatinazlar, stromelisinler, matrilisinler, membran tipi MMP'ler ve diğer sınıflandırılmamış MMP'ler olmak üzere altı gruba ayrılmaktadır. MMP'ler yaşlanma ile ilgili olmalarının yanı sıra, birçok kanser çeşidinin oluşması ve ilerlemesiyle de yakından ilişkilidir. Bu çalışmada, cilt yaşlanmasına neden olan etmenler, organizmada meydana gelen birçok hastalıkla ilişkili önemli bir enzim ailesi olan MMP enzimleri ve yaşlanma ile olan ilişkileri araştırılmıştır.
Anahtar Kelimeler: Matriks metalloproteinazlar; deri yaşlanması; kollajenazlar
Skin aging is one of the major problems of modern times for both men and women. Aging is a complicated and slow progressive process that affects the function and appearance of the skin with structural and molecular deterioration. This process is shaped by various internal and external factors. Skin aging as a basis takes place in two different ways: time-dependent chronological aging (intrinsic aging) and extrinsic aging due to negative environmental factors such as smoking and excessive alcohol use, and malnutrition. More than 90% of the skin changes are due to the environmental effects caused by chronic sun damage. Therefore, extrinsic aging is also referred to as photoaging. Matrix metalloproteinases (MMPs), a major cause of aging, are the main enzyme group responsible for the breakdown of collagen and other proteins in the extracellular matrix. Collagen is the main structural component of connective tissue, and its degradation is one of the main causes of aging. The MMP family is divided into six groups: Collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs and other unclassified MMPs. MMPs are closely related to aging and the development and progression of many types of cancer. In this study, the factors that cause skin aging, MMP enzymes which are an important family of enzymes related to many diseases in organism and their relationship with aging are investigated.
Keywords: Matrix metalloproteinases; skin aging; collagenases
- Rittie L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harbor Perspect Med. 2015;5(1):a015370. [Crossref] [PubMed] [PMC]
- Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462-70. [Crossref] [PubMed]
- Gilchrest BA. Skin aging and photoaging: an overview. J Am Acad Dermatol. 1989;21(3 Pt 2):610-3. [Crossref]
- Brooke RC, Newbold SA, Telfer NR, Griffiths CE. Discordance between facial wrinkling and the presence of basal cell carcinoma. Arch Dermatol. 2001;137(6):751-4.
- Durai PC, Thappa DM, Kumari R, Malathi M. Aging in elderly: chronological versus photoaging. Indian J Dermatol. 2012;57(5):343-52. [Crossref] [PubMed] [PMC]
- Tagami H. Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res. 2008;300 Suppl 1:S1-6. [Crossref] [PubMed]
- West MD. The cellular and molecular-biology of skin aging. Arch Dermatol. 1994;130(1):87-95. [Crossref] [PubMed]
- Ichihashi M. Mechanisms of aging and photoaging of skin. How wrinkles are formed. Fragrance J. 2004;32:24-30.
- Elias PM, Goerke J, Friend DS. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol. 1977;69(6):535-46. [Crossref] [PubMed]
- Bernstein EF, Chen YQ, Tamai K, Shepley KJ, Resnik KS, Zhang H, et al. Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Invest Dermatol. 1994;103(2):182-6. [Crossref] [PubMed]
- Bolognia JL. Aging skin. Am J Med. 1995;98(1A):99S-103S. [Crossref]
- Davinelli S, Bertoglio JC, Polimeni A, Scapagnini G. Cytoprotective polyphenols against chronological skin aging and cutaneous photodamage. Curr Pharm Des. 2018;24(2):99-105. [Crossref] [PubMed]
- Scharffetter-Kochanek K, Brenneisen P, Wenk J, Herrmann G, Ma W, Kuhr L, et al. Photoaging of the skin from phenotype to mechanisms. Exp Gerontol. 2000;35(3):307-16. [Crossref]
- Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123(7):801-10. [Crossref]
- Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9(2):135-60. [Crossref]
- Inoue Y, Shibasaki M. Regional differences in age-related decrements of the cutaneous vascular and sweating responses to passive heating. Eur J Appl Physiol Occup Physiol. 1996;74(1-2):78-84. [Crossref] [PubMed]
- Inoue Y, Shibasaki M, Ueda H, Ishizashi H. Mechanisms underlying the age-related decrement in the human sweating response. Eur J Appl Physiol Occup Physiol. 1999;79(2): 121-6. [Crossref] [PubMed]
- Wallace DC, Brown MD, Melov S, Graham B, Lott M. Mitochondrial biology, degenerative diseases and aging. Biofactors. 1998;7(3): 187-90. [Crossref] [PubMed]
- Saretzki G, Sitte N, Merkel U, Wurm RE, von-Zglinicki T. Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene. 1999;18(37):5148-58. [Crossref] [PubMed]
- Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28(3):321-6. [Crossref] [PubMed]
- Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16(10):908-14. [Crossref] [PubMed]
- Ma W, Wlaschek M, Tantcheva-Poor I, Schneider LA, Naderi L, Razi-Wolf Z, et al. Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin Exp Dermatol. 2001;26(7):592-9. [Crossref] [PubMed]
- Peres PS, Terra VA, Guarnier FA, Cecchini R, Cecchini AL. Photoaging and chronological aging profile: understanding oxidation of the skin. J Photochem Photobiol B. 2011;103(2):93-7. [Crossref] [PubMed]
- Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ. Matrix-degrading metalloproteinases in photoaging. J Invest Derm Symp Proc. 2009;14(1):20-4. [Crossref] [PubMed] [PMC]
- Wen KC, Fan PC, Tsai SY, Shih IC, Chiang HM. Ixora parviflora Protects against UV-B-induced photoaging by inhibiting the expression of MMPs, MAP kinases, and COX-2 and by promoting Type I procollagen synthesis. Evid Based Complement Alternat Med. 2012;2012:417346. [Crossref] [PubMed] [PMC]
- Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239-47. [Crossref] [PubMed]
- Briganti S, Flori E, Picardo M. Intensity of oxidant stimulus, inflammation and cell senescence: possible implication in photoaging process. J Invest Dermatol. 2015;135:82.
- Trautinger F. Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clin Exp Dermatol. 2001;26(7):573-7. [Crossref] [PubMed]
- Chung JH, Hanft VN, Kang S. Aging and photoaging. J Am Acad Dermatol. 2003;49(4): 690-7. [Crossref]
- Chung JH. Photoaging in Asians. Photodermatol Photoimmunol Photomed. 2003;19(3): 109-21. [Crossref] [PubMed]
- Freitas-Rodriguez S, Folgueras AR, Lopez-Otin C. The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt A):2015-25. [Crossref] [PubMed]
- Nagase H, Murphy G. Metalloproteinases, matrix A2. In: Lennarz WJ, Lane MD, eds. Encyclopedia of Biological Chemistry. 2nd ed. Waltham: Academic Press; 2013. p.90-7. [Crossref]
- Reel B. [Matrix metalloproteinases and atherosclerosis: review]. Turkiye Klinikleri J Med Sci. 2006;26(5):527-37.
- Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drug. 1997;15(1):61-75. [Crossref] [PubMed]
- Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(Suppl 1):177-83. [Crossref] [PubMed]
- Oncel M. [Matrix metalloproteinases and cancer]. Eur J Basic Med Sci. 2012;2(3):91-100.
- Kahari VM, Saarialho-Kere U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med. 1999;31(1):34-45. [Crossref] [PubMed]
- Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004;48(5-6):411-24. [Crossref] [PubMed]
- Okada A, Seiki M. Matrix metalloproteinases in cancer invasion and metastasis. Igaku no Ayumi. 1997;182:114-8.
- Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discovery Today. 2001;6(9):478-82. [Crossref]
- Miyagi Y, Yanoma S. Matrix metalloproteinases (MMPs) in tumor angiogenesis. Nippon Kessen Shiketsu Gakkaishi. 2001;12: 311-3. [Crossref]
- Decock J, Hendrickx W, Vanleeuw U, Van Belle V, Van Huffel S, Christiaens MR, et al. Plasma MMP1, MMP8 and MMP13 expression in breast cancer: protective role of MMP8 against lymph node metastasis. BMC Cancer. 2008;8:77. [Crossref] [PubMed] [PMC]
- Sauter W, Rosenberger A, Beckmann L, Kropp S, Mittelstrass K, Timofeeva M, et al. Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1127-35. [Crossref] [PubMed]
- Gijbels K, Masure S, Carton H, Opdenakker G. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol. 1992;41(1):29-34. [Crossref]
- Firestein GS. Mechanisms of tissue destruction and cellular activation in rheumatoid arthritis. Curr Opin Rheumatol. 1992;4(3):348-54. [Crossref] [PubMed]
- Denis LJ, Verweij J. Matrix metalloproteinase inhibitors: present achievements and future prospects. Invest New Drug. 1997;15(3):175-85. [Crossref] [PubMed]
- Brown PD. Clinical studies with matrix metalloproteinase inhibitors. Apmis. 1999;107(1): 174-80. [Crossref] [PubMed]
- Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, et al. Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail. 2007;13(7):530-40. [Crossref] [PubMed] [PMC]
- Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res. 2003;59(4):812-23. [Crossref]
- Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827-39. [Crossref] [PubMed]
- Eisen AZ, Jeffrey JJ, Gross J. Human skin collagenase. Isolation and mechanism of attack on the collagen molecule. Biochim Biophys Acta. 1968;151(3):637-45. [Crossref]
- Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562-73. [Crossref] [PubMed]
- Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the "omics" era. Matrix Biol. 2016;49:10-24. [Crossref] [PubMed] [PMC]
- Wlaschek M, Briviba K, Stricklin GP, Sies H, Scharffetter-Kochanek K. Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J Invest Dermatol. 1995;104(2):194-8. [Crossref] [PubMed]
- Taddese S, Weiss AS, Neubert RH, Schmelzer CE. Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biol. 2008;27(5):420-8. [Crossref] [PubMed]
- Taddese S, Weiss AS, Jahreis G, Neubert RH, Schmelzer CE. In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biol. 2009;28(2):84-91. [Crossref] [PubMed]
- Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S, et al. Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med. 2012;33(2):119-208. [Crossref] [PubMed]
- Liu Y, Lai J, Dong Y, He C. Research progress of MMP-1 and skin aging. Zhongguo Laonianxue Zazhi. 2010;30:3037-9.
- Masaki H. Skin aging mechanisms and materials. Nippon Koshohin Gakkaishi. 2013;37:11-6.
- Nema NK, Maity N, Sarkar BK, Mukherjee PK. Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica. Pharm Biol. 2013;51(9):1182-7. [Crossref] [PubMed]
- Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17(6). [Crossref] [PubMed] [PMC]
- Herrmann G, Wlaschek M, Lange TS, Prenzel K, Goerz G, Scharffetter-Kochanek K. UV-A irradiation stimulates the synthesis of various matrix-metalloproteinases (MMPs) in cultured human fibroblasts. Exp Dermatol. 1993;2(2): 92-7. [Crossref] [PubMed]
- Son WC, Yun JW, Kim BH. Adipose-derived mesenchymal stem cells reduce MMP-1 expression in UV-irradiated human dermal fibroblasts: therapeutic potential in skin wrinkling. Biosci Biotechnol Biochem. 2015;79(6):919-25. [Crossref] [PubMed]
- Onoue S, Kobayashi T, Takemoto Y, Sasaki I, Shinkai H. Induction of matrix metalloproteinase-9 secretion from human keratinocytes in culture by ultraviolet B irradiation. J Dermatol Sci. 2003;33(2):105-11. [Crossref] [PubMed]
- Kim HS, Song JH, Youn UJ, Hyun JW, Jeong WS, Lee MY, et al. Inhibition of UV-B-induced wrinkle formation and MMP-9 expression by mangiferin isolated from Anemarrhena asphodeloides. Eur J Pharmacol. 2012;689(1-3):38-44. [Crossref] [PubMed]
- Fortino V, Maioli E, Torricelli C, Davis P, Valacchi G. Cutaneous MMPs are differently modulated by environmental stressors in old and young mice. Toxicol Lett. 2007;173(2):73-9. [Crossref] [PubMed]
- Amano S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp Dermatol. 2016;25 Suppl 3:14-9. [Crossref] [PubMed]
- Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995;270(11):5872-6. [Crossref] [PubMed]
- Chen Z, Seo JY, Kim YK, Lee SR, Kim KH, Cho KH, et al. Heat modulation of tropoelastin, fibrillin-1, and matrix metalloproteinase-12 in human skin in vivo. J Invest Dermatol. 2005;124(1):70-8. [Crossref] [PubMed]
- Shi LQ, Ruan CL. Expression and significance of MMP-7, c-Jun and c-Fos in rats skin photoaging. Asian Pac J Trop Med. 2013;6(10):768-70. [Crossref]
- Kaar JL, Li Y, Blair HC, Asche G, Koepsel RR, Huard J, et al. Matrix metalloproteinase-1 treatment of muscle fibrosis. Acta Biomater. 2008;4(5):1411-20. [Crossref] [PubMed]
- Radbill BD, Gupta R, Ramirez MC, DiFeo A, Martignetti JA, Alvarez CE, et al. Loss of matrix metalloproteinase-2 amplifies murine toxin-induced liver fibrosis by upregulating collagen I expression. Dig Dis Sci. 2011;56(2):406-16. [Crossref] [PubMed] [PMC]
- Balbin M, Fueyo A, Knauper V, Pendas AM, Lopez JM, Jimenez MG, et al. Collagenase 2 (MMP-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus. J Biol Chem. 1998;273(37):23959-68. [Crossref] [PubMed]
- Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, et al. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J. 1999;340(Pt 1):171-81. [Crossref] [PubMed] [PMC]
- Varani J, Spearman D, Perone P, Fligiel SE, Datta SC, Wang ZQ, et al. Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol. 2001;158(3):931-42. [Crossref]
.: Process List