Büyütme faktörü olarak antibiyotiklerin yemlere katılmasının yasaklanmasının ardından tavukçuluk sektöründe ciddi kayıplar gündeme gelmiştir. Bu kayıplar, patojen etkenlere yakalanma olasılığının artışına bağlı olarak ilaç-veteriner hizmeti giderleri, et yumurta veriminde düşme, var olan diğer sürüler için ve yetiştirilmeye alınacak hatlar için kontaminasyon riskinde artış şeklinde kendini göstermiştir. Bağırsak mikrobiyotasının ve histomorfolojik yapısının bozulmasına ilişkin immün sistemin baskılanması ve buna bağlı olarak gelişen ekonomik kayıplar da oldukça önem kazanmaktadır. Bunların önlenebilmesi amacıyla antibiyotiğe alternatif yem katkı maddesi arayışları başlamış ve hâlen devam etmektedir. Antibiyotiğe alternatif olan probiyotikler, postbiyotikler ve esansiyel yağ asitleri gibi birçok yem katkı maddesi arasında yer alabilen algler, besin madde içeriğinin yüksek olmasıyla da dikkat çekmeyi başarmıştır. Son zamanlarda önemi artan bir diğer konu da nanoteknoloji ve bu teknoloji ile üretilen ürünlerin hayvan beslemede kullanılabilirliği olmuştur. Nanopartikül, nanogümüş partiküllerin antimikrobiyal etkileri ortaya konmuş, bu teknoloji ile mikroalglerin üretilmesi çabasına girilmiştir. Söz konusu derlemede, etlik piliçlerin beslenmesinde kullanılabilen algler ve gümüş nanopartiküller ele alınmıştır. Önemli bir biyoteknolojik gelişme olan gümüş nanopartiküllerin çok sayıda üretim yöntemi bulunmaktadır. Üretimi sırasında oluşan toksik ve çevreye zararlı etkiler neticesinde yeşil sentez ortaya çıkmış ve bu amaçlarla gümüş nanopartikül üretiminde algler kullanılmaya başlanmıştır. Yeşil sentez yönteminin kullanılmasıyla hem çevreye olumlu etkiler yaratan hem de antibiyotiğe alternatif bir katkının ortaya çıkması gündeme gelmiştir.
Anahtar Kelimeler: Mikroalg; nanoteknoloji; kanatlı; antibiyotik
After the prohibition of the addition of antibiotics to the ration as a growth factor, serious losses have been raised in the poultry entegrations. These losses are due to the increase in the probability of catching pathogenic agents, drug-veterinary service expenses, decrease in meat-egg yield, contamination risk for other existing flocks and lines. Recently, suppression of the immune system related to the deterioration of intestinal microbiology and histomorphological structure and the resulting economic losses are also coming into question. In order to prevent them, the probably usage of feed additives for alternative to antibiotics have begun and still in progress. Algae, which can be taken a part of many feed additives such as probiotics, postbiotics and essential fatty acids as an alternative to antibiotics, have also attracted attention with their high nutrient content. Another topic of increasing importance recently has been nanotechnology and the availability in animal nutrition of its products that are produced with this technology. The antimicrobial effects of nanoparticle and nanosilver particles have been demonstrated and this technology has been attempted to produce microalgae. In this review, algae and silver nanoparticles which can be used in broiler diets are discussed. There are numerous production methods of silver nanoparticles which are an important biotechnological development. As a result of toxic and environmentally harmful effects during production, green synthesis has been developed and algae have been used for silver nanoparticle production. With the use of the green synthesis method, both of an alternative contribution to the antibiotic and the positive effects on the environment has emerged.
Keywords: Microalg; nanotechnology; poultry; antibiotic
- Belay A, Kato T, Ota Y. Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol. 1991;8:303-11. [Crossref]
- Demiriz T. Bazı alglerin antibakteriyel etkileri. Ankara University, Ankara, Turkey, 2008.
- Evans AM, Smith DL, Moritz JS. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. J Appl Poultry Res. 2015;24(2):206-14. [Crossref]
- Ibrahim D, Lim SH. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pac J Trop Biomed. 2015;5(9):785-8. [Crossref]
- Jamil ABMR, Akanda R, Rahman M, Hossain A, Islam S. Prebiotic competence of Spirulina on the production performance of broiler chickens. J Adv Vet Anim Res. 2015;2(3):304-9. [Crossref]
- Beheshtiphour H, Mortazavian AM, Mohammadi R, Sohrabvandi S, Khosravi-Darani K. Supplementation Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr Rev Food Sci Food Saf. 2013;12(2):144-54. [Crossref]
- Shanmugapriya B, Babu SS, Hariharan T, Sivaneswaran S, Anusha MB. Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. Int J Recent Sci Res. 2015;6:2650-3.
- Qureshi MA, Garlich JD, Kidd MT. Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacol Immunetoxicol. 1996;18(3):465-76. [Crossref] [PubMed]
- Farag MR, Alagawany M, El-Hack MEA, Dhama K. Nutritional and healthical aspects of Spirulina (Arthrospira) for poultry, animals and human. Int J Pharm. 2016;12(1):36-51. [Crossref]
- Rao CNR, Müller A, Cheetham AK. The Chemistry of Nanometerials: Synthesis, Properties and Applications. Vol. 1. Weinheim, Germany: WILEY- VCH verlag GmbH & Co.; 2005. p.761.
- Çıracı S, Özbay E, Gülseren O, Demir HV, Bayındır M, Oral A, et al. Türkiye'de Nanoteknoloji. TÜBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) Bilim ve Teknik Dergisi. 2006;8.
- Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Sur A Physicochem Eng Asp. 2009;339:134-9. [Crossref]
- Liveri VT. Controlled Synthesis of Nanoparticles in Microheterogeneous Systems. Boston MA: Springer Sciences Business Media; 2006. p.167.
- Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle and metal. Angew Chem Int Ed Engl. 2013;52(6):1636-53. [Crossref] [PubMed]
- Schierholz JM, Lucas LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. J Hosp Infect. 1998;40(4):257-62. [Crossref]
- Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18(28):604-11. [Crossref]
- Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model on gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177-82. [Crossref] [PubMed]
- Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA-MRSE. Nanomedicine. 2009;5(4):452-6. [Crossref] [PubMed]
- de Moraes AC, Lima BA, de Faria AF, Brocchi M, Alves OL. Graphene-oxide silver nanocomposite as an promising biocidal agent against Methicilin-Resistans Staphylococcus aureus. Int J Nanomedicine. 2015;10:6847-61. [Crossref] [PubMed] [PMC]
- Vivek M, Kumar PS, Steffi S, Sudha S. Biogenic silver nanoparticles by Gelidiella Acerosa extract and their antifungal effects. Avicenna J Med Biotecnol. 2011;3(3):143-8.
- Lara HH, Ayala-Nu-ez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 2010;8:1. [Crossref] [PubMed] [PMC]
- Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of Monkeypox Virus plaque formation. Nanoscale Res Lett. 2008;3(4):129-33. [Crossref] [PMC]
- Özcan MA. [Silver nanoparticles and studies on using in poultry nutrition]. Tavukçuluk Araştırma Dergisi. 2014;11(2):16-20.
- Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta. 2005;51(5):956-60. [Crossref]
- Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2-3):572-5. [Crossref] [PubMed]
- Shukla MK, Singh RP, Reddy CRK, Jha B. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol. 2012;107:295-300. [Crossref] [PubMed]
- Lauridsen C, Engberg ME, Pineda L, Chwalibog A. Influence of hydrocolloidal silver nanoparticles on gastro intestinal microflora and immune status of broiler chickens. In: Proceedings of the 18 European Symposium on Poultry Nutrition. İzmir, Turkey: ESPN; 2011.
- Sawosz E, Binek M, Grodzik M, Zielińska M, Sysa P, Szmidt M, et al. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arc Anim Nutr. 2007;61(6):444-51. [Crossref] [PubMed]
- Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012;66(5):416-29. [Crossref] [PubMed]
- Ahmadi F, Kurdestani AH. The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria. 2010;5(6):366-70.
- Elkloub K, Moustafa ME, Ghazalah AA, Rehan AAA. Effect of dietary nanosilver on broiler performance. Int J Poult Sci. 2015;14(3):177-82. [Crossref]
- Ahmadi J. Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Appl Sci J. 2009;7:24-7.
- Ahmadi J, Irani M, Choobchian M. Pathological study of intestine and liver in broiler chickens after treatment with different levels of silver nanoparticles. World Appl Sci J. 2009;7(Suppl1):28-32.
- Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J. Nanoparticles in feed: progress and prospects in poultry research. Trends Food Sci Technol. 2016;58:115-26. [Crossref]
- Rai MK, Yadav AP, Gade AK. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-82. [Crossref] [PubMed]
- Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: Review of the Literature. Burns. 2007;33(2):139-48. [Crossref] [PubMed]
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germ line stem cells. Toxicol Sci. 2005;88:412-9. [Crossref] [PubMed] [PMC]
- Takenaka S, Karg E, Roth C, Shulz H, Ziesenis A, Heinzmann U, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109(Suppl 4):547-51. [Crossref] [PubMed] [PMC]
- Deepak V, Umamaheshwaran PS, Guhan K, Nanthini RA, Krithiga B, Meeran N, et al. Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf B Biointerfaces. 2011;86(2):353-8. [Crossref] [PubMed]
- Nath D, Banerjee P. Green nanotecnology - a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36(3):997-1014. [Crossref] [PubMed]
- Mallick K, Witcomb MJ, Scurrell MS. Polymer stabilized silver nanoparticles: a photochemical synthesis route. Journal of Materials Science. 2004;39:4459-63. [Crossref] >
- Mallick MA, O'Brien P, Revaprasadu R. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater. 2002;14(5):2004-10. [Crossref]
- Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. [Crossref] [PubMed] [PMC]
- Ganaie SU, Abbasi T, Abbasi SA. Green synthesis of silver nanoparticles using an otherwise worthless weed mimosa (Mimosa pudica): feasibility and process development toward shape/size control. Particul Sci Technol. 2015;33(6):638-44. [Crossref]
- Narayan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1-2):1-13. [Crossref] [PubMed]
- Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press;1998.
- Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. 2nd International Conference on Emerging Technologies. 2015. [Crossref]
- Gopi M, Pearlin B, Kumar RD, Shanmathy M, Govindasamy P. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharmacol. 2017;13(7):724-31. [Crossref]
- Kulkarni L, Muddapur U. Biosynthesis of metal nanoparticles. J Nanotechnol. 2014;1-8. [Crossref]
- Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and antibiofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria. Nanoscale Res Lett. 2004;9(1):373. [Crossref] [PubMed] [PMC]
- Nirmala JM, John S, Ernest V, Dhas S, Arputhamani S, Mukherjee A, et al. A review on safer means of nanoparticle synthesis by exploring the prolific marine ecosystem as a new thrust area in nanopharmaceutics. Int J Pharm Pharm Sci. 2013;5(1):23-9.
- Lengke FM, Fleem EM, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from silver(I) nitrate complex. Langmuir. 2007;23(5):2694-9. [Crossref] [PubMed]
- Mahdieh M, Zolanvari A, Azimee AS, Mahdieha M. Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica. 2012;19(3):926-9. [Crossref]
- Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, et al. Biogenic synthesis of silver nanoparticles using pod extract of Cola nitida: antibacterial and antioxidant activities and application as paint additive. J Taibah Uni Sci. 2016;10(4):551-62. [Crossref]
- Adebayo-Tayo B, Salaam A, Ajibade A. Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. 2019;5(10). e02502. [Crossref] [PubMed] [PMC]
- Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK. Biosynthesis and characterization of silver nanoparticles microalgae Chlorococcum humicola and its antibacterial activity. Int J of Nanomater Bioss. 2013;3:1-8.
- Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. 2015;5:499-504. [Crossref]
.: Process List