İmmün sistem, 3 ana kısımdan oluşmaktadır. Bunlar; immün sistem organları, immünositler adı da verilen immün sistem hücreleri ve immün moleküllerdir. Kompleman, çok sayıda protein içeren, doğal ve edinsel immün sistemin temel moleküllerindendir. Vücuttaki kompleman proteinlerinin oranı ve farklı kompleman proteinleri arasındaki denge, hastalıklarla yakından ilişkilidir. Kompleman sistemi, 3 farklı yolla aktifleşerek yabancı olan moleküllerden konağı korur. Farklı kompleman proteinleri ile başlayan aktivasyon süreci ortak bir mekanizma ile sonlanır. Böbrek nakli de aslında immün sistemin bir sınavıdır. Canlı veya kadavra vericiden (donör) alınan böbrek, hastaya yabancıdır ve nakil hastadaki immün sistemi harekete geçirir. Kompleman proteinleri de doğal olarak bu sürece katılır. Bu derlemede, naklin 2 tarafı olan hasta ve donörün, kompleman sistemine olan katkısı değerlendirilmiştir. Hastada, böbrek yetersizliğine gidişi tetikleyen kompleman proteinlerindeki anormal durumlar, hastalıktan kaynaklanan inflamasyon ve son dönem böbrek yetersizliği olan hastalardaki diyalizin, kompleman proteinlerini etkilemesi muhtemeldir. Özellikle kadavradan yapılan nakillerde, yoğun bakım ünitelerindeki donörlerden kaynaklı veya iskemi süreleri ile kompleman sisteminin aktivasyonu oluşur. Bu donörlerdeki, hemodinamik dengesizlik, hormon düzensizliği ve inflamatuar reaksiyonlar önemli fizyolojik değişikliklere neden olur. Sonuçta olarak, hücre fenotiplerinin değişimi, kemokin ve sitokin havuzlarındaki farklılıklar, kompleman aktivasyonuyla sonuçlanabilir. Farklı yolların aktivasyonu ve bu yollar arasındaki sinerji, immün reaksiyonu güçlendirir. Nakil öncesinde ve sonrasında immün sistem aktivasyonunun, kompleman penceresinden de değerlendirilmesi organ nakli kliniklerine katkı sağlayacaktır.
Anahtar Kelimeler: Böbrek transplantasyonu; diyaliz; kompleman
The immune system consists of three main parts. These are organs of the immune system, cells of the immune system, also called immunocytes, and immune molecules. Complement is one of the basic molecules of the natural and acquired immune system that contains a large number of proteins. The proportion of complement proteins in the body and the balance between different complement proteins are closely related to diseases. The complement system is activated in three different ways to protect the host from foreign molecules. The activation process starts with different complement proteins and ends with a common mechanism. Renal transplantation is also the factor that activates the immune system. The kidney from living or cadaver donor is foreign to the patient and the transplant activates the immune system. Complement proteins are also naturally involved in this process. In this review, the contribution to the complement system of the patient and donor, who are on both sides of the transplant was evaluated. Abnormal conditions in the complement proteins that triggering the progression to renal failure in the patient, inflammation caused the disease, and dialysis in patients with endstage renal failure are likely to affect complement proteins. Especially in cadaver transplants, activation of the complement system occurs due to donor in intensive care units or ischemia times. Hemodynamic imbalance, hormone disorder and inflammatory reactions in these donors cause important physiological changes. As a result, changes in cell phenotypes, differences in chemokine and cytokine pools may result in complement activation. The evaluation of immune system activation before and after transplantation from the complement window will contribute to organ transplantation clinics.
Keywords: Kidney transplantation; dialysis; complement
- Nesargikar PN, Spiller B, Chavez R. The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp). 2012;2(2):103-11.[PubMed]
- Reis ES, DeAngelis RA, Chen H, Resuello RRG, Ricklin D, Lambris JD. Therapeutic C3 inhibitor Cp40 abrogates complement activation induced by modern hemodialysis filters. Immunobiology. 2015;220(4):476-82.[Crossref] [PubMed]
- Nonaka M. Evolution of the complement system. Subcell Biochem. 2014;80:31-43.[Crossref] [PubMed]
- Barnum SR. Complement: A primer for the coming therapeutic revolution. Pharmacol. Ther. 2017;172:63-72.[Crossref] [PubMed]
- Tichaczek-Goska D. Deficiencies and excessive human complement system activation in disorders of multifarious etiology. Adv Clin Exp Med. 2012;21(1):105-14.[PubMed]
- Michielsen LA, van Zuilen AD, Muskens IS, Verhaar MC, Otten HG. Complement polymorphisms in kidney transplantation: critical in graft rejection? Am J Transplant. 2017;17(8):2000-7.[Crossref] [PubMed]
- Biglarnia AR, Huber-Lang M, Mohlin C, Ekdahl KN, Nilsson B. The multifaced role of complement in kidney transplantation. Nat Rev Nephrol. 2018;14(12):767-81.[Crossref] [PubMed]
- Abbas A, Lichtman A, Pillai S. Effector Mechanisms of Humoral Immunity, Cellular and Molecular Immunology. 7th ed. Philadelphia: Elsevier; 2011. p.269-92. https://www.elsevier.com/books/cellular-and-molecular-immunology/abbas/978-1-4377-1528-6
- Khan MA, Shamma T. Complement factor and T-cell interaction during alloimmune inflamation in transplantation. J Leukoc Biol. 2019;105(4):681-94.[Crossref] [PubMed]
- Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part ý - molecular mechanisms of activation and regulation. Front Immunol. 2015;6;262:1.[Crossref]
- de Taeye SW, Rispens T, Vidarsson G. The ligands for human IgG and their effector functions. Antibodies (Basel). 2019;25;8(2):30.[Crossref] [PubMed] [PMC]
- Sharp TH, Boyle AL, Diebolder CA, Kros A, Koster AJ, Gros P, et al. Insights into IgM- madiated complement activation based on in situ structures of IgM-C1-C4b. Proc Natl Acad Sci U S A. 2019;116(24):11900-05.[Crossref]
- Petru?ić V, Živković I, Stojanović M, Stojićević I, Marinković E, Dimitrijević L. Hexameric immunoglobulin M in humans: desired or unwanted? Med Hypotheses. 2011;77(6):959-61.[Crossref] [PubMed]
- Stowell SR, Winkler AM, Maier CL, Arthur CM, Smith NH, Girard-Pierce KR, et al. Initiation and regulation of complement during hemolytic transfusion reactions. Clin Dev Immunol. 2012;2012:307093.[Crossref] [PubMed] [PMC]
- Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, et al. Decoding the human immunoglobulin g-glycan repertoire reveals a spectrum of fc-receptor- and complement-mediated-effector activities. Front Immunol. 2017;2;8:877. eCollection 2017.[Crossref] [PubMed] [PMC]
- Subedi GP, Hanson QM, Barb AW. Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient Fc?RIIIa binding. Structure. 2014;7;22(10):1478-88.[Crossref] [PubMed] [PMC]
- Beltrame MH, Catarino SJ, Goeldner I, Boldt ABW, de Messias-Reason IJ. The lectin pathway of complement and rheumatic heart disease. Front Pediatr. 2015;21;2:148.[Crossref] [PubMed] [PMC]
- Poppelaars F, Faria B, Gaya da Costa M, Franssen CFM, van Son WJ, Berger SP, et al. The complement system in dialysis: a forgotten story? Front Immunol. 2018;25;9:71.[Crossref] [PubMed] [PMC]
- Kerr PG, Huang L. Review: membranes for haemodialysis. Nephrology (Carlton). 2010;15(4):381-5.[Crossref] [PubMed]
- Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977;7;296(14):769-74.[Crossref] [PubMed]
- Hempel JC, Poppelaars F, Gaya da Costa M, Franssen CFM, de Vlaam TPG, Daha MR, et al. Distinct in vitro complement activation by various intravenous iron preparations. Am J Nephrol. 2017;45(1):49-59.[Crossref] [PubMed]
- Damman J, Seelen MA, Moers C, Daha MR, Rahmel A, Leuvenink HG, et al. Systemic complement activation in deceased donors is associated with acute rejection after renal transplantation in the recipient. Transplantation. 2011;27;92(2):163-9.[Crossref] [PubMed]
- Sim E, Sim RB. Enzymic assay of C3b receptor on intact cells and solubilized cells. Biochem J. 1983;15;210(2):567-76.[Crossref] [PubMed] [PMC]
- Denk S, Neher MD, Messerer DAC, Wiegner R, Nilsson B, Rittirsch D, et al. Complement C5a functions as a master switch for the ph balance in neutrophils exerting fundamental immunometabolic effects. J Immunol. 2017;15;198(12):4846-54.[Crossref] [PubMed]
- Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest. 2016;2;126(5):1911-25.[Crossref] [PubMed] [PMC]
- Kolářová H, Ambrůzová B, Svihálková ?indlerová L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014;2014:694312.[Crossref] [PubMed] [PMC]
- Castellano G, Intini A, Stasi A, Divella C, Gigante M, Pontrelli P, et al. Complement modulation of anti-aging factor klotho in ischemia/reperfusion injury and delayed graft function. Am J Transplant. 2016;16(1):325-33.[Crossref] [PubMed]
- Delpech PO, Thuillier R, SaintYves T, Danion J, Le Pape S, van Amersfoort ES, et al. Inhibition of complement improves graft outcome in a pig model of kidney autotransplantation. J Transl Med. 2016;23;14(1):277.[Crossref] [PubMed] [PMC]
- Nauser CL, Farrar CA, Sacks SH. Complement recognition pathways in renal transplantation. J Am Soc Nephrol. 2017;28(9):2571-8.[Crossref] [PubMed] [PMC]
- Zhang R. Donor-specific antibodies in kidney transplant recipients. Clin J Am Soc Nephrol. 2018;6;13(1):182-92.[Crossref] [PubMed] [PMC]
- Kılıçaslan Ayna T, Pirim İ. [Rejection mechanisms and bioindicators in kidney transplantation]. Turkiye Klinikleri J Intern Med. 2019;4(1):13-24.[Crossref]
- Hamer R, Molostvov G, Lowe D, Satchell S, Mathieson P, Ilyas R, et al. Human leukocyte antigen- specific antibodies and gamma- interferon stimulate human microvascular and glomerular endothelial cells to produce complement factor C4. Transplantation. 2012;93(9):867-73.[Crossref] [PubMed]
- Lee H, Han E, Choi AR, Ban TH, Chung BH, Yang CW, et al. Clinical impact of complement (C1q, C3d) binding De Novo donor-specific HLA antibody in kidney transplant recipients. PLoS One. 2018;14;13(11):e0207434.[Crossref] [PubMed] [PMC]
- Delanghe JR, Speeckaert R, Speeckaert MM. Complement C3 and its polymorphism: biological and clinical consequences. Pathology. 2014;46(1):1-10.[Crossref] [PubMed]
- Grafals M, Thurman JM. The role of complement in organ transplantation. Front Immunol. 2019;4;10:2380.[Crossref] [PubMed] [PMC]
- Mohebnasab M, Eriksson O, Persson B, Sandholm K, Mohlin C, Huber-Lang M, et al. Current and future approaches for monitoring responses to anti-complement therapeutics. Front Immunol. 2019;8;10:2539.[Crossref] [PubMed] [PMC]
- Lewis AG, Köhl G, Ma Q, Devarajan P, Köhl J. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin Exp Immunol. 2008;153(1):117-26.[Crossref] [PubMed] [PMC]
- Rich MC, Keene CN, Neher MD, Johnson K, Yu ZX, Ganivet A, et al. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci Lett. 2016;23;617:188-94.[Crossref] [PubMed]
- Ruseva MM, Ramaglia V, Morgan BP, Harris CL. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci USA. 2015;17;112(46):14319-24.[Crossref] [PubMed]
- Stegall MD, Diwan T, Raghavaiah S, Cornell LD, Burns J, Dean PG, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant. 2011;11(11):2405-13.[Crossref] [PubMed]
- Sicard A, Ducreux S, Rabeyrin M, Couzi L, McGregor B, Badet L, et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J Am Soc Nephrol. 2015;26(2):457-67.[Crossref] [PubMed] [PMC]
- Tillou X, Poirier N, Le Bas-Bernardet S, Hervouet J, Minault D, Renaudin K, et al. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons. Kidney Int. 2010;78(2):152-9.[Crossref] [PubMed]
- Kirschfink M. C1-inhibitor and transplantation. Immunobiology. 2002;205(4-5):534-41.[Crossref] [PubMed]
- Viglietti D, Gosset C, Loupy A, Deville L, Verine J, Zeev A, et al. C1 inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study. Am J Transplant. 2016;16(5):1596-603.[Crossref] [PubMed]
- Montgomery RA, Orandi BJ, Racusen L, Jackson AM, Garonzik-Wang JM, Shah T, et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am J Transplant. 2016;16(12):3468-78.[Crossref] [PubMed]
- Halloran PF, Reeve JP, Pereira AB, Hidalgo LG, Famulski KS. Antibody-mediated rejection, T cell-mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int. 2014;85(2):258-64.[Crossref] [PubMed]
- Ricklin D, Mastellos DC, Reis ES, Lambris JD. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018;14(1):26-47.[Crossref] [PubMed] [PMC]
- Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia AR, et al. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur J Clin Invest. 2015;45(4):423-40.[Crossref] [PubMed] [PMC]
- Vogel CW, Fritzinger DC. Cobra venom factor: structure, function, and humanization for therapeutic complement depletion. Toxicon. 2010;15;56(7):1198-222.[Crossref] [PubMed]
- Heeger PS, Kemper C. Novel roles of complement in T effector cell regulation. Immunobiology. 2012;217(2):216-24.[Crossref] [PubMed]
.: Process List