Katı oral dozaj şekillerinde biyoyararlanım ve biyoeşdeğerliğin değerlendirilebilmesi için uygulamadan sonra ilacın sırasıyla dağılması, sulu ortamda çözünmesi ve sistemik dolaşıma geçmesi gerekmektedir. Bu aşamalarda etkin maddeye ait fizikokimyasal özellikler, dozaj şekli tasarımına ait özellikler ve uygulama bölgesindeki anatomik ve fizyolojik özellikler uygulanan ilacın biyoyararlanım ve biyoeşdeğerliğine doğrudan etki eder. Dozaj şeklinin tipi, dağılma (dezentegrasyon), çözünme (disolüsyon), farmasötik eksipiyanlar ve üretim değişkenleri dozaj şekli tasarımına ait özellikler olmakla birlikte; partikül büyüklüğü, suda çözünürlük, dağılma katsayısı, tuz yapısı, iyonlaşma derecesi, iyonizasyon sabiti (pKa), ön ilaç formu, solvat-hidrat, polimorfizm özellikleri ise etkin maddeye ait fizikokimyasal özellikler olup, ilaç biyoyararlanım ve biyoeşdeğerliği üstünde birinci derece öneme sahiptir. Bu çalışmada, biyoyararlanım ve biyoeşdeğerliğe etki eden etkin maddeye ait fizikokimyasal özellikler için güncel literatür taranarak değerlendirilmesi yapılmış ve etkin maddenin fizikokimyasal kısıtlarından kaynaklanan biyoyararlanım sorununun iyileştirilmesi üzerine güncel yaklaşımlar sınıflandırılarak değerlendirilmiştir. Etkin maddenin biyoyararlanım ile biyoeşdeğerliğe etki eden ve biyoyararlanımı kısıtlayan fizikokimyasal özelliklerinin iyileştirilmesinde güncel yaklaşımların son yıllarda hız kazanarak ilaç araştırma ve geliştirme çalışmalarında geniş yer kazandığı ve Amerikan Gıda ve İlaç İdaresi tarafından artan onay oranları ile klinik kullanımda yaygın olarak yer almaya başladığı belirlenmiştir. Bu amaçla, konunun güncel literatür çalışmaları ile örneklendirilerek değerlendirilmesi amaçlanmıştır.
Anahtar Kelimeler: Biyoyararlanım; biyoeşdeğerlik; oral dozaj şekli
In order to evaluate the bioavailability and bioequivalence in solid oral dosage forms, the drug must be dispersed, dissolved in the aqueous medium and enter the systemic circulation, respectively, after administration. At these stages, the physicochemical properties of the active ingredient, the properties of the dosage form design, and the anatomical and physiological characteristics of the application area directly affect the bioavailability and bioequivalence of the administered drug. Although the type of dosage form, disintegration, dissolution, pharmaceutical excipients and production variables are the features of dosage form design; particle size, water solubility, dispersion coefficient, salt structure, degree of ionization, ionization constant (pKa), prodrug form, solvate-hydrate, polymorphism properties are the physicochemical properties of the active substance and are of primary importance on drug bioavailability and bioequivalence. In this study, the physicochemical properties of the active substance that affect its bioavailability and bioequivalence were evaluated by evaluating the current literature, and current approaches to improving the bioavailability problem arising from the physicochemical limitations of the active substance were classified and evaluated. It has been determined that current approaches to improving the physicochemical properties of the active substance, which affect bioavailability and bioequivalence and restrict bioavailability, have increased in recent years and gained wide coverage in drug research and development studies, and have begun to be applied in clinical use with increasing approval rates by the American Food and Drug Administration. For this purpose, it is aimed to evaluate the subject by exemplifying it with current literature studies.
Keywords: Bioavailability; bioequivalence; oral dosage form
- Fang L, Uppoor R, Xu M, Sharan S, Zhu H, Tampal N, et al. Use of partial area under the curve in bioavailability or bioequivalence assessments: a regulatory perspective. Clin Pharmacol Ther. 2021;110(4):880-7. [Crossref] [PubMed]
- Rodrigues MB, Barreto ACH, Neto EMR, de Araújo TG. Comparative study among drying techniques in the development of nimesulide tablet. Journal of Young Pharmacists. 2020;12(1):42-7. [Crossref]
- Shi J, Wang D, Tian Y, Wang Z, Gao J, Liu N, et al. Comparison of Paliperidone Palmitate from Different Crystallization Processes and Effect on Formulations In Vitro and In Vivo. Pharmaceutics. 2022;14(5):1094. [Crossref] [PubMed] [PMC]
- Elmi GR, Anum K, Saleem K, Fareed R, Noreen S, Wei H, et al. Evaluation of clinical trials of ethnomedicine used for the treatment of diabetes: A systematic review. Front Pharmacol. 2023;14:1176618. [Crossref] [PubMed] [PMC]
- Macheras P, Tsekouras AA. Revising Oral Pharmacokinetics, Bioavailability and Bioequivalence Based on the Finite Absorption Time Concept. 1st ed. Cham: Springer Nature; 2023. [Crossref] [PMC]
- Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42(6):620-43. [Crossref] [PubMed]
- Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388-405. [Crossref] [PubMed] [PMC]
- Zhao C, Jin C, Gao H, Wang L, Liu H, He Z. Effect of raw material variability of glipizide on the in vitro dissolution rate and in vivo bioavailability performance: The importance of particle size. Asian J Pharm Sci. 2019;14(2):165-73. [Crossref] [PubMed] [PMC]
- Muselík J, Urbanova M, Bartoníčková E, Palovčík J, Vetchý D, Czernek J, et al. Structural changes of sodium warfarin in tablets affecting the dissolution profiles and potential safety of generic substitution. Pharmaceutics. 2021;13(9):1364. [Crossref] [PubMed] [PMC]
- Gopi S, Balakrishnan P. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. J Liposome Res. 2021;31(4):356-64. [Crossref] [PubMed]
- Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. International Journal of Pharmaceutics. 1995;125(2):309-13. [Crossref]
- Kayser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm. 2003;254(1):73-5. [Crossref] [PubMed]
- Salazar J, Müller RH, Möschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci. 2013;49(4):565-77. [Crossref] [PubMed]
- Sahasrabudhe V, Matschke K, Shi H, Hickman A, Kong A, Rodríguez Spong B, et al. Relative bioavailability of ertugliflozin tablets containing the amorphous form versus tablets containing the cocrystal form. Int J Clin Pharmacol Ther. 2022;60(7):317-26. [Crossref] [PubMed] [PMC]
- De Caro V, Ajovalasit A, Sutera FM, Murgia D, Sabatino MA, Dispenza C. Development and characterization of an amorphous solid dispersion of furosemide in the form of a sublingual bioadhesive film to enhance bioavailability. Pharmaceutics. 2017;9(3):22. [Crossref] [PubMed] [PMC]
- Pawar YB, Shete G, Popat D, Bansal AK. Phase behavior and oral bioavailability of amorphous Curcumin. Eur J Pharm Sci. 2012;47(1):56-64. [Crossref] [PubMed]
- Meiron OE, Bar-David E, Aflalo ED, Shechter A, Stepensky D, Berman A, et al. Solubility and bioavailability of stabilized amorphous calcium carbonate. J Bone Miner Res. 2011;26(2):364-72. [Crossref] [PubMed]
- Cho KH, Jee JP, Yang DA, Kim ST, Kang D, Kim DY, et al. Improved dissolution and oral bioavailability of celecoxib by a dry elixir system. J Nanosci Nanotechnol. 2018;18(2):1482-6. [Crossref] [PubMed]
- Li L, Yin XH, Diao KS. Improving the solubility and bioavailability of pemafibrate via a new polymorph form II. ACS Omega. 2020;5(40):26245-52. [Crossref] [PubMed] [PMC]
- Barmpalexis P, Grypioti A, Vardaka E, Karagianni A, Kachrimanis K. Development of a novel amorphous agomelatine formulation with improved storage stability and enhanced bioavailability. J Pharm Sci. 2018;107(1):257-66. [Crossref] [PubMed]
- Ren S, Jiao L, Yang S, Zhang L, Song J, Yu H, et al. A novel co-crystal of bexarotene and ligustrazine improves pharmacokinetics and tissue distribution of bexarotene in SD rats. Pharmaceutics. 2020;12(10):906. [Crossref] [PubMed] [PMC]
- Santos OM, Freitas JT, Cazedey EC, de Araújo MB, Doriguetto AC. Structure, solubility and stability of orbifloxacin crystal forms: hemihydrate versus anhydrate. Molecules. 2016;21(3):328. [Crossref] [PubMed] [PMC]
- Wiergowska G, Stasiłowicz A, Miklaszewski A, Lewandowska K, Cielecka-Piontek J. Structural polymorphism of sorafenib tosylate as a key factor in its solubility differentiation. Pharmaceutics. 2021;13(3):384. [Crossref] [PubMed] [PMC]
- Ahuja S, Scypinski S. Handbook of Modern Pharmaceutical Analysis. 2nd ed. Amsterdam: Academic Press; 2010.
- Amézqueta S, Subirats X, Fuguet E, Rosés M, Ràfols C. Octanol-water partition constant. Liquid-Phase Extraction. 2020;183-208. [Crossref]
- Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem. 2023;11:1145974. [Crossref] [PubMed] [PMC]
- Wang Y, Chen J, Yang Y, Gao S, Wang Z, Liu Y, et al. Oil-water partition coefficient preparation and detection in the dihydroartemisinin self-emulsifying drug delivery system. BMC Biotechnol. 2022;22(1):16. [Crossref] [PubMed] [PMC]
- Vaddi HK, Ho PC, Chan YW, Chan SY. Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes. J Control Release. 2002;81(1-2):121-33. [Crossref] [PubMed]
- Abioye AO, Issah S, Kola-Mustapha AT. Ex vivo skin permeation and retention studies on chitosan-ibuprofen-gellan ternary nanogel prepared by in situ ionic gelation technique--a tool for controlled transdermal delivery of ibuprofen. Int J Pharm. 2015;490(1-2):112-30. [Crossref] [PubMed]
- Borbás E, Balogh A, Bocz K, Müller J, Kiserdei É, Vigh T, et al. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux?. Int J Pharm. 2015;491(1-2):180-9. [Crossref] [PubMed]
- Avachat AM, Parpani SS. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B Biointerfaces. 2015;126:87-97. [Crossref] [PubMed]
- Devhare L, Kore P. A recent review on bioavailability and solubility enhancement of poorly soluble drugs by physical and chemical modifications. Research Chronicle in Health Sciences. 2016;2(5):299-308. [Link]
- Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10(9):2055. [Crossref] [PubMed] [PMC]
- Samineni R, Chimakurthy J, Konidala S. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: a systematic review. Turk J Pharm Sci. 2022;19(6):706-13. [Crossref] [PubMed] [PMC]
- ?alamúnová P, Saloň I, Ruphuy G, Kroupová J, Balouch M, Hanu? J, et al. Evaluation of β-glucan particles as dual-function carriers for poorly soluble drugs. Eur J Pharm Biopharm. 2021;168:15-25. [Crossref] [PubMed]
- Trastullo R, Dolci LS, Passerini N, Albertini B. Development of flexible and dispersible oral formulations containing praziquantel for potential schistosomiasis treatment of pre-school age children. Int J Pharm. 2015;495(1):536-50. [Crossref] [PubMed]
- Meng F, Ferreira R, Zhang F. Effect of surfactant level on properties of celecoxib amorphous solid dispersions. Journal of Drug Delivery Science and Technology. 2019;49:301-7. [Crossref]
- Jambhekar S, Casella R, Maher T. The physicochemical characteristics and bioavailability of indomethacin from beta-cyclodextrin, hydroxyethyl-beta-cyclodextrin, and hydroxypropyl-beta-cyclodextrin complexes. Int J Pharm. 2004;270(1-2):149-66. [Crossref] [PubMed]
- Neau SH, Howard MA, Claudius JS, Howard DR. The effect of the aqueous solubility of xanthine derivatives on the release mechanism from ethylcellulose matrix tablets. Int J Pharm. 1999;179(1):97-105. [Crossref] [PubMed]
- Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. International Journal of Pharmaceutics. 1995;125:91-7. [Crossref]
- Sanches BMA, Ferreira EI. Is prodrug design an approach to increase water solubility? Int J Pharm. 2019;568:118498. [Crossref] [PubMed]
- Özdemir Z, Karakurt A. İlaç metabolizması ve farmasötik kimyada önemi [Drug metabolism and its ımportance in pharmaceutical chemistry]. Annals of Health Sciences Research. 2016;5(2):35-46. [Crossref]
- Najjar A, Najjar A, Karaman R. Newly developed prodrugs and prodrugs in development; an ınsight of the recent years. Molecules. 2020;25(4):884. [Crossref] [PubMed] [PMC]
- Ates-Alagoz Z, Adejare A. Prodrugs. In: Adejare A, ed. Remington. 23th ed. Philadelphia: Academic Press; 2021. p.169-86. [Crossref]
- Wang X, Borges CA, Ning X, Rafi M, Zhang J, Park B, et al. A trimethoprim conjugate of thiomaltose has enhanced antibacterial efficacy in vivo. Bioconjug Chem. 2018;29(5):1729-35. Erratum in: Bioconjug Chem. 2018;29(11):3935. [Crossref] [PubMed] [PMC]
- Meibom D, Albrecht-Küpper B, Diedrichs N, Hübsch W, Kast R, Krämer T, et al. Neladenoson bialanate hydrochloride: a prodrug of a partial adenosine a1 receptor agonist for the chronic treatment of heart diseases. ChemMedChem. 2017;12(10):728-37. [Crossref] [PubMed]
- Liu T, Yuan X, Jia T, Liu C, Ni Z, Qin Z, et al. Polymeric prodrug of bufalin for increasing solubility and stability: Synthesis and anticancer study in vitro and in vivo. Int J Pharm. 2016;506(1-2):382-93. [Crossref] [PubMed]
- Ayalew L, Acuna J, Urfano SF, Morfin C, Sablan A, Oh M, et al. Conjugation of Paclitaxel to Hybrid Peptide Carrier and Biological Evaluation in Jurkat and A549 Cancer Cell Lines. ACS Med Chem Lett. 2017;8(8):814-9. [Crossref] [PubMed] [PMC]
- Patil S, Lis LG, Schumacher RJ, Norris BJ, Morgan ML, Cuellar RA, et al. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts. J Med Chem. 2015;58(23):9334-44. [Crossref] [PubMed] [PMC]
- Saal C, Becker A. Pharmaceutical salts: a summary on doses of salt formers from the Orange Book. Eur J Pharm Sci. 2013;49(4):614-23. [Crossref] [PubMed]
- Bharate SS. Recent developments in pharmaceutical salts: FDA approvals from 2015 to 2019. Drug Discov Today. 2021;26(2):384-98. [Crossref] [PubMed]
- Bharate SS. Modulation of biopharmaceutical properties of acidic drugs using cationic counterions: A critical analysis of FDA-approved pharmaceutical salts. Int J Pharm. 2021;607:120993. [Crossref] [PubMed]
- Liu L, Zou D, Zhang Y, Zhang Q, Feng Y, Guo Y, et al. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability. Eur J Pharm Biopharm. 2020;154:62-73. [Crossref] [PubMed]
- Surov AO, Manin AN, Voronin AP, Drozd KV, Simagina AA, Churakov AV, et al. Pharmaceutical salts of ciprofloxacin with dicarboxylic acids. Eur J Pharm Sci. 2015;77:112-21. [Crossref] [PubMed]
- Joshi M, Roy Choudhury A. Salts of Amoxapine with Improved Solubility for Enhanced Pharmaceutical Applicability. ACS Omega. 2018;3(2):2406-16. [Crossref] [PubMed] [PMC]
- Liu L, An Q, Zhang Y, Sun W, Li J, Feng Y, et al. Improving the solubility, hygroscopicity and permeability of enrofloxacin by forming 1: 2 pharmaceutical salt cocrystal with neutral and anionic co-existing p-nitrobenzoic acid. Journal of Drug Delivery Science and Technology. 2022;76:103732. [Crossref]
- Suresh A, Gonde S, Mondal PK, Sahoo J, Chopra D. Improving solubility and intrinsic dissolution rate of ofloxacin API through salt formation via mechanochemical synthesis with diphenic acid. Journal of Molecular Structure. 2020;1221:128806. [Crossref]
- Park C, Meghani NM, Shin Y, Oh E, Park JB, Cui JH, et al. Investigation of crystallization and salt formation of poorly water-soluble telmisartan for enhanced solubility. Pharmaceutics. 2019;11(3):102. [Crossref] [PubMed] [PMC]
.: Process List